Abstract
We present and evaluate a microcontroller-optimized limited-memory implementation of a Warping Longest Common Subsequence algorithm (WarpingLCSS). It permits to spot patterns within noisy sensor data in real-time in resource constrained sensor nodes. It allows variability in the sensed system dynamics through warping; it uses only integer operations; it can be applied to various sensor modalities; and it is suitable for embedded training to recognize new patterns. We illustrate the method on 3 applications from wearable sensing and activity recognition using 3 sensor modalities: spotting the QRS complex in ECG, recognizing gestures in everyday life, and analyzing beach volleyball. We implemented the system on a low-power 8-bit AVR wireless node and a 32-bit ARM Cortex M4 microcontroller. Up to 67 or 140 10-second gestures can be recognized simultaneously in real-time from a 10Hz motion sensor on the AVR and M4 using 8mW and 10mW respectively. A single gesture spotter uses as few as 135μW on the AVR. The method allows low data rate distributed in-network recognition and we show a 100 fold data rate reduction in a complex activity recognition scenario. The versatility and low complexity of the method makes it well suited as a generic pattern recognition method and could be implemented as part of sensor front-ends.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Avci, A., Bosch, S., Marin-Perianu, M., Marin-Perianu, R., Havinga, P.: Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: A survey. In: Proc Int. Conf. on Architecture of Computing Systems, pp. 1–10 (2010)
Bahrepour, M., Meratnia, N., Havinga, P.: Sensor fusion-based event detection in wireless sensor networks. In: Mobile and Ubiquitous Systems, pp. 1–8 (2009)
Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)
Benatti, S., Farella, E., Benini, L.: EMG embedded HMI for smart garments. In: Atelier of Smart Garments and Accessories Workshop at Ubicomp (2014)
Buscà, B., Moras, G., Peña, J., Rodríguez-Jiménez, S.: The influence of serve characteristics on performance in men’s and women’s high-standard beach volleyball. Journal of Sports Sciences 30(3), 269–276 (2012)
Pham, C., Plötz, T., Olivier, P.: A dynamic time warping approach to real-time activity recognition for food preparation. In: de Ruyter, B., Wichert, R., Keyson, D.V., Markopoulos, P., Streitz, N., Divitini, M., Georgantas, N., Mana Gomez, A. (eds.) AmI 2010. LNCS, vol. 6439, pp. 21–30. Springer, Heidelberg (2010)
Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S., Millán, J., Roggen, D., Tröster, G.: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters 34, 2033–2042 (2013)
Chen, Z., Ranieri, J., Zhang, R., Vetterli, M.: DASS: Distributed adaptive sparse sensing. arXiv:1401.1191 (1013)
Fortino, G., Guerrieri, A., Bellifemine, F.L., Giannantonio, R.: SPINE2: Developing BSN applications on heterogeneous sensor nodes. In: Proc. IEEE Symposium on Industrial Embedded Systems (2009)
Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering 32(3) (1985)
Kale, N., Lee, J., Lotfian, R., Jafari, R.: Impact of sensor misplacement on dynamic time warping based human activity recognition using wearable computers. In: Proc Wireless Health (2012)
Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., Turon, M.: Health monitoring of civil infrastructures using wireless sensor networks. In: 6th Int. Symp. on Information Processing in Sensor Networks, pp. 254–263 (2007)
Kunze, K., Lukowicz, P.: Dealing with sensor displacement in motion-based onbody activity recognition systems. In: Proc. 10th Int. Conf. on Ubiquitous Computing (2008)
Marin-Perianu, M., Lombriser, C., Amft, O., Havinga, P., Tröster, G.: Distributed activity recognition with fuzzy-enabled wireless sensor networks. In: Nikoletseas, S.E., Chlebus, B.S., Johnson, D.B., Krishnamachari, B. (eds.) DCOSS 2008. LNCS, vol. 5067, pp. 296–313. Springer, Heidelberg (2008)
Nguyen-Dinh, L.V., Calatroni, A., Tröster, G.: Robust online gesture recognition with crowdsourced annotations. Journal of Machine Learning Research 15, 3187–3220 (2014)
Nguyen-Dinh, L.V., Roggen, D., Calatroni, A., Tröster, G.: Improving online gesture recognition with template matching methods in accelerometer data. In: Proc 12th Int Conf. on Intelligent Systems Design and Applications, pp. 831–836 (2012)
Patel, S., Park, H., Bonato, P., Chan, L., Rodgers, M.: A review of wearable sensors and systems with application in rehabilitation. Journal of NeuroEngineering and Rehabilitation 9(21) (2012)
Rashidi, P., Cook, D.J.: The resident in the loop: Adapting the smart home to the user. IEEE Transactions on Systems, Man, and Cybernetics Journal, Part A 39(5), 949–959 (2009)
Roggen, D., Bächlin, M., Schumm, J., Holleczek, T., Lombriser, C., Tröster, G., Widmer, L., Majoe, D., Gutknecht, J.: An educational and research kit for activity and context recognition from on-body sensors. In: Proc. IEEE Int. Conf. on Body Sensor Networks (BSN), pp. 277–282 (2010)
Sagha, H., Bayati, H., del R. Millán, J.: On-line anomaly detection and resilience in classifier ensembles. Pattern Recognition Letters 34(15), 1916–1927 (2013)
Stäger, M., Lukowicz, P., Perera, N., von Büren, T., Tröster, G., Starner, T.: SoundButton: Design of a Low Power Wearable Audio Classification System. In: Proc of the 7th International Symposium on Wearable Computers, pp. 12–17. IEEE Computer Society Press, Los Alamitos (2003)
Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., Keogh, E.: Indexing multi-dimensional time-series with support for multiple distance measures. In: Proc 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pp. 216–225. ACM, New York (2003)
Wark, T., Corke, P., Sikka, P., Klingbeil, L., Guo, Y., Crossman, C., Valencia, P., Swain, D., Bishop-Hurley, G.: Transforming agriculture through pervasive wireless sensor networks. IEEE Pervasive Computing Magazine 6(2), 50–57 (2007)
Wei, B., Yang, M., Shen, Y., Rana, R., Chou, C.T., Hu, W.: Real-time classification via sparse representation in acoustic sensor networks. In: Proc 11th ACM Conf. on Embedded Networked Sensor Systems, vol. (21) (2013)
Yang, A.Y., Jafari, R., Sastry, S.S., Bajcsy, R.: Distributed recognition of human actions using wearable motion sensor networks. Journal of Ambient Intelligence and Smart Environments 1, 1–13 (2009)
Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Computer Networks 52(12), 2292–2330 (2008)
Zappi, P., Farella, E., Benini, L.: Hidden markov models implementation for tangible interfaces. In: Nijholt, A., Reidsma, D., Hondorp, H. (eds.) INTETAIN 2009. LNICST, vol. 9, pp. 258–263. Springer, Heidelberg (2009)
Zappi, P., Roggen, D., Farella, E., Tröster, G., Benini, L.: Network-level power-performance trade-off in wearable activity recognition: a dynamic sensor selection approach. ACM Transactions on Embedded Computing Systems 11(3) (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Roggen, D., Cuspinera, L.P., Pombo, G., Ali, F., Nguyen-Dinh, LV. (2015). Limited-Memory Warping LCSS for Real-Time Low-Power Pattern Recognition in Wireless Nodes. In: Abdelzaher, T., Pereira, N., Tovar, E. (eds) Wireless Sensor Networks. EWSN 2015. Lecture Notes in Computer Science, vol 8965. Springer, Cham. https://doi.org/10.1007/978-3-319-15582-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-15582-1_10
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-15581-4
Online ISBN: 978-3-319-15582-1
eBook Packages: Computer ScienceComputer Science (R0)