Nothing Special   »   [go: up one dir, main page]

Skip to main content

On a Type of Nonconforming Morley Rectangular Finite Element

  • Conference paper
  • First Online:
Numerical Methods and Applications (NMA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8962))

Included in the following conference series:

  • 1838 Accesses

Abstract

In the recent years, the constriction, analysis and application of nonconforming finite elements have been an active research area. So, for fourth-order elliptic problems conforming finite element methods (FEMs) require \(C^1-\)continuity, which usually leads to complicated implementation [1]. This drawback could be surmounted by using nonconforming methods. These FEMs have been widely applied in computational engineering and structural mechanics.

This paper deals with rectangular variants of the Morley finite elements [2]. Beside Adini nonconforming finite element, they can be used for plates with sides parallel to the coordinate axes, such as rectangular plates.

The applicability of different types of Morley rectangles applied for fourth-order problems is also discussed. Numerical implementation and results applied to plate bending problem illustrate the presented investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis. Finite Element Methods (Part 1), vol. 2, pp. 21–343. Elsevier Science Publishers, North-Holland (1991)

    Google Scholar 

  2. Zhang, H., Wang, M.: The Mathematical Theory of Finite Elements. Science Press, Beijing (1991)

    Google Scholar 

  3. Wang, M., Xu, J.: The Morley element for fourth order elliptic equations in any dimensions. Numer. Math. 103(1), 155–169 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Wang, M., Shi, Z.-C., Xu, J.: Some n-rectangle nonconforming finite elements for fourth order elliptic equations. J. Comput. Math. 25(4), 408–420 (2007)

    MATH  MathSciNet  Google Scholar 

  5. Wang, L., Xie, X.: Uniformly stable rectangular elements for fourth order elliptic singular perturbation problems. Numer. Methods Partial Differ. Eq. 29(3), 721–737 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Andreev, A.B., Racheva, M.R.: Nonconforming rectangular Morley finite elements. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) NAA 2012. LNCS, vol. 8236, pp. 158–165. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Nicaise, S.: A posteriori error estimations of some cell-centered finite volume methods. SIAM J. Numer. Anal. 43(04), 1481–1503 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lin, Q., Lin, J.F.: Finite Element Methods: Accuracy and Improvement. Science Press, Beijing (2006)

    Google Scholar 

  9. Lascaux, P., Lesaint, P.: Some nonconforming finite elements for the plate bending problem. ESAIM: Math. Model. Numer. Anal.-Modelisation Mathematique et Analyse Numerique 9(R1), 9–53 (1975)

    MATH  MathSciNet  Google Scholar 

  10. Babuška, I., Osborn, J.: Eigenvalue problems. In: Lions, J.-L., Ciarlet, P.G. (eds.) Handbook of Numerical Analysis. Finite Element Methods (Part 1), vol. II, pp. 641–787. North-Holland, Amsterdam (1991)

    Google Scholar 

  11. Yang, Y.D.: A posteriori error estimates in Adini finite element for eigenvalue problems. J. Comput. Math. 18, 413–418 (2000)

    MATH  MathSciNet  Google Scholar 

  12. Lin, Q., Xie, H.: The asymptotic lower bounds of eigenvalue problems by nonconforming finite element methods. Math. Pract. Theory 42(11), 219–226 (2012)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work is partially supported by the Bulgarian NSF grant DFNI-I 01/5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Racheva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Andreev, A.B., Racheva, M.R. (2015). On a Type of Nonconforming Morley Rectangular Finite Element. In: Dimov, I., Fidanova, S., Lirkov, I. (eds) Numerical Methods and Applications. NMA 2014. Lecture Notes in Computer Science(), vol 8962. Springer, Cham. https://doi.org/10.1007/978-3-319-15585-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15585-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15584-5

  • Online ISBN: 978-3-319-15585-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics