Nothing Special   »   [go: up one dir, main page]

Skip to main content

Wavelet Compression of Spline Coefficients

  • Conference paper
  • First Online:
Numerical Methods and Applications (NMA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8962))

Included in the following conference series:

  • 1820 Accesses

Abstract

Based on a concept for thresholding of wavelet coefficients, which was addressed in [8] and further explored in [6, 7], a method for balancing between non-threshold- and threshold shrinking of wavelet coefficients has emerged. Generalized expo-rational B-splines (GERBS) is a blending type spline construction where local functions at each knot are blended together by \(C^k\)-smooth basis functions. Global data fitting can be achieved with GERBS by fitting local functions to the data. One property of the GERBS construction is an intrinsic partitioning of the global data. Compression of the global data set can be achieved by applying the shrinking strategy to the GERBS local functions. In this initial study we investigate how this affects the resulting GERBS geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bernstein, S.: Démonstration du théorème de weierstrass fondée sur le calcul des probabilités. Comm. Soc. Math. Kharkov 13, 1–2 (1913)

    Google Scholar 

  2. de Boor, C.: Splines as linear combinations of b-splines. A survey (1976)

    Google Scholar 

  3. Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. XLV, 485–560 (1992)

    Article  MathSciNet  Google Scholar 

  4. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. XLI, 909–966 (1988)

    Article  MathSciNet  Google Scholar 

  5. Dechevsky, L.T., Bang, B., Lakså, A.: Generalized expo-rational b-splines. Int. J. Pure Appl. Math. 57(6), 833–872 (2009)

    MATH  MathSciNet  Google Scholar 

  6. Dechevsky, L.T., Grip, N., Gundersen, J.: A new generation of wavelet shrinkage: adaptive strategies based on composition of Lorentz-type thresholding and Besov-type non-threshold shrinkage. In: Truchetet, F., Laligant, O. (eds.) Wavelet Applications in Industrial Processing V. Proceedings of SPIE,. Boston, MA, USA, vol. 6763, pp. 1–14 (2007)

    Google Scholar 

  7. Dechevsky, L.T., Gundersen, J., Grip, N.: Wavelet compression, data fitting and approximation based on adaptive composition of Lorentz-type thresholding and Besov-type non-threshold shrinkage. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2009. LNCS, vol. 5910, pp. 738–746. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Dechevsky, L.T., Ramsay, J.O., Penev, S.I.: Penalized wavelet estimation with besov regularity constraints. Math. Balkanica (N.S.) 13(3–4), 257–376 (1999)

    MATH  MathSciNet  Google Scholar 

  9. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 8(3), 425–455 (1994)

    Article  MathSciNet  Google Scholar 

  10. Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Picard, D.: Wavelet shrinkage: asymptopia? J. Roy. Stat. Soc. Ser. B 57(2), 301–369 (1995)

    MATH  MathSciNet  Google Scholar 

  11. Eck, M., Hadenfeld, J.: Knot removal for b-spline curves. Comput. Aided Geom. Des. 12(3), 259–282 (1994)

    Article  MathSciNet  Google Scholar 

  12. Farin, G.: Curves and Surfaces for CAGD: A Practical Guide, 5th edn. Academic Press, New York (2002)

    Google Scholar 

  13. Lakså, A., Bang, B., Dechevsky, L.T.: Exploring expo-rational b-splines for curves and surfaces. In: Dæhlen, M., Mørken, K., Schumaker, L. (eds.) Mathematical Methods for Curves and Surfaces, pp. 253–262. Nashboro Press, Brentwood (2005)

    Google Scholar 

  14. Lyche, T., Mørken, K.: Knot removal for parametric b-spline curves and surfaces. Comput. Aided Geom. Des. 4(3), 217–230 (1987)

    Article  MATH  Google Scholar 

  15. Schumaker, L.L., Stanley, S.S.: Shape-preserving knot removal. Comput. Aided Geom. Des. 13(9), 851–872 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jostein Bratlie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bratlie, J., Dalmo, R., Bang, B. (2015). Wavelet Compression of Spline Coefficients. In: Dimov, I., Fidanova, S., Lirkov, I. (eds) Numerical Methods and Applications. NMA 2014. Lecture Notes in Computer Science(), vol 8962. Springer, Cham. https://doi.org/10.1007/978-3-319-15585-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15585-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15584-5

  • Online ISBN: 978-3-319-15585-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics