Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Clustering Method for Identifying Regions of Interest in Turbulent Combustion Tensor Fields

  • Conference paper
Visualization and Processing of Higher Order Descriptors for Multi-Valued Data

Abstract

Production of electricity and propulsion systems involve turbulent combustion. Computational modeling of turbulent combustion can improve the efficiency of these processes. However, large tensor datasets are the result of such simulations; these datasets are difficult to visualize and analyze. In this work we present an unsupervised statistical approach for the segmentation, visualization and potentially the tracking of regions of interest in large tensor data. The approach employs a machine learning clustering algorithm to locate and identify areas of interest based on specified parameters such as strain tensor value. Evaluation on two combustion datasets shows this approach can assist in the visual analysis of the combustion tensor field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, J.D.J.: Modern Compressible Flow: With Historical Perspective, 3rd edn. McGraw-Hill Science/Engineering/Math (2002)

    Google Scholar 

  2. Caban, J.J., Joshi, A., Rheingans, P.: Texture-based feature tracking for effective time-varying data visualization. IEEE Trans. Vis. Comput. Graph. 13(6), 1472–1479 (2007)

    Article  Google Scholar 

  3. Elmqvist, N., Stasko, J., Tsigas, P.: Datameadow: a visual canvas for analysis of large-scale multivariate data. In: VAST IEEE Symposium on Visual Analytics Science and Technology, Proceedings, pp. 187–194 (2007)

    Google Scholar 

  4. Inselberg, A., Dimsdale, B.: Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: Proceedings of the 1st Conference on Visualization ’90 (VIS ’90), San Francisco, pp. 361–378. IEEE Computer Society Press, Los Alamitos (1990). http://dl.acm.org/citation.cfm?id=949531.949588

  5. Ji, G., Shen, H.-W., Wenger, R.: Volume tracking using higher dimensional isosurfacing. In: Proceedings of the 14th IEEE Visualization, pp. 209–216 (2003)

    Google Scholar 

  6. Klippel, A., Hardisty, F., Li, R., Weaver, C.: Colour-enhanced star plot glyphs: can salient shape characteristics be overcome? Cartogr.: Int. J. Geogr. Inf. Geovis. 44(3), 217–231 (2009)

    Google Scholar 

  7. Lovely, D., Haimesy, R.: Shock detection from computational fluid dynamics results. In: Proceedings of the 14th AIAA Computational Fluid Dynamics Conference, 1:M2 (1999)

    Google Scholar 

  8. Ma, K.-L., Rosendale, J.V., Vermeer, W.: 3d shock wave visualization on unstructured grids. In: IEEE Symposium on Volume Visualization and Graphics, pp. 87–104 (1996)

    Google Scholar 

  9. Maries, A., Haque, M., Yilmaz, S., Nik, M., Marai, G.: Interactive exploration of stress tensors used in computational turbulent combustion. In: Laidlaw, D., Villanova, A. (eds.) New Developments in the Visualization and Processing of Tensor Fields, pp. 137–156. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. McCallum, A., Nigam, K., Ungar, L.H.: Efficient clustering of high-dimensional data sets with application to reference matching. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’00, pp. 169–178. ACM Press, New York (2000)

    Google Scholar 

  11. Meyer, F., Bouthemy, P.: Region-based tracking using affine motion models in long image sequences. CVGIP: Image Underst. 60(2), 119–140 (1994)

    Article  Google Scholar 

  12. Muelder, C., Ma, K.-L.: Interactive feature extraction and tracking by utilizing region coherency. In: IEEE Pacific Visualization Symposium, PacificVis ’09, pp. 17–24 (2009)

    Google Scholar 

  13. Ozer, S., Wei, J., Silver, D., Ma, K.-L., Martin, P.: Group dynamics in scientific visualization. In: IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp. 97–104 (2012)

    Google Scholar 

  14. Pagendarm, H.-G., Seitz, B.: An algorithm for detection and visualization of discontinuities in scientific data fields applied to flow data with shock waves. In: Scientific Visualization: Advanced Software Techniques, pp. 161–177 (1993)

    Google Scholar 

  15. Post, F.H., Vrolijk, B., Hauser, H., Larameeand, R.S., Doleisch, H.: The state of the art in flow visualisation: feature extraction and tracking. Comput. Graphics Forum 22(4), 775–792 (2003)

    Article  Google Scholar 

  16. Samtaney, R., Silver, D., Zabusky, N., Cao, J.: Visualizing features and tracking their evolution. Computer 27(7), 20–27 (1994)

    Article  Google Scholar 

  17. Silver, D., Wang, X.: Volume tracking. In: Proceedings of Seventh Annual IEEE Visualization ’96, pp. 157–164 (1996)

    Google Scholar 

  18. Silver, D., Wang, X.: Tracking and visualizing turbulent 3d features. IEEE Trans. Vis. Comput. Graph. 3(2), 129–141 (1997)

    Article  Google Scholar 

  19. Smith, S.M., Brady, J.M.: Asset-2: real-time motion segmentation and shape tracking. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 814–820 (1995)

    Article  Google Scholar 

  20. Tzeng, F.-Y., Ma, K.-L.: Intelligent feature extraction and tracking for visualizing large-scale 4d flow simulations. In: Proceedings of the ACM/IEEE SC 2005 Conference Supercomputing, p. 6 (2005)

    Google Scholar 

  21. Wegman, E.J.: Hyperdimensional data analysis using parallel coordinates. J. Am. Stat. Assoc. 85(411), 664–675 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF CBET-1250171 and NSF CAREER IIS-0952720.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Elisabeta Marai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Maries, A. et al. (2015). A Clustering Method for Identifying Regions of Interest in Turbulent Combustion Tensor Fields. In: Hotz, I., Schultz, T. (eds) Visualization and Processing of Higher Order Descriptors for Multi-Valued Data. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-15090-1_16

Download citation

Publish with us

Policies and ethics