Nothing Special   »   [go: up one dir, main page]

Skip to main content

Improved Modular Multiplication for Optimal Prime Fields

  • Conference paper
  • First Online:
Information Security Applications (WISA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8909))

Included in the following conference series:

  • 1435 Accesses

Abstract

Optimal Prime Fields (OPFs) are considered to be one of the best choices for lightweight elliptic curve cryptography implementation on resource-constraint embedded processors. In this paper, we revisit efficient implementation of the modular arithmetic over the special prime fields, and present improved implementation of modular multiplication for OPFs, called Optimal Prime Field Coarsely Integrated Operand Caching (OPF-CIOC) method. OPF-CIOC method follows the general idea of (consecutive) operand caching technique, but has been carefully optimized and redesigned for Montgomery multiplication in an integrated fashion. We then evaluate the practical performance of proposed method on representative 8-bit AVR processor. Experimental results show that the proposed OPF-CIOC method outperforms the previous best known results in ACNS’14 by a factor of 5 %. Furthermore, our method is implemented in a regular way which helps to reduce the leakage of side-channel information.

This work was supported by the Industrial Strategic Technology Development Program (This work was supported by the ICT R&D program of MSIP/IITP. [10043907, Development of high performance IoT device and Open Platform with Intelligent Software]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chu, D., Großschädl, J., Liu, Z., Müller, V., Zhang, Y.: Twisted edwards-form elliptic curve cryptography for 8-bit AVR-based sensor nodes. In: Proceedings of the first ACM workshop on Asia public-key cryptography, pp. 39–44. ACM (2013)

    Google Scholar 

  2. Comba, P.G.: Exponentiation cryptosystems on the IBM PC. IBM Syst. J. 29(4), 526–538 (1990)

    Article  Google Scholar 

  3. Großschädl, J., Tinysa: A security architecture for wireless sensor networks. In: Proceedings of the 2006 ACM CoNEXT conference, p. 55. ACM (2006)

    Google Scholar 

  4. Großschädl, J., Hudler, M., Koschuch, M., Krüger, M., Szekely, A.: Smart elliptic curve cryptography for smart dust. In: Zhang, X., Qiao, D. (eds.) QShine 2010. LNICST, vol. 74, pp. 623–634. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve cryptography and RSA on 8-bit CPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Hankerson, D., Vanstone, S., Menezes, A.J.: Guide to Elliptic Curve Cryptography. Springer, New York (2004)

    MATH  Google Scholar 

  7. Hutter, M., Wenger, E.: Fast multi-precision multiplication for public-key cryptography on embedded microprocessors. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 459–474. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Koç, Ç.K., Acar, T., Kaliski Jr., B.S.: Analyzing and comparing montgomery multiplication algorithms. Micro IEEE 16(3), 26–33 (1996)

    Article  Google Scholar 

  9. Liu, Z., Großschädl, J., Kizhvatov, I.: Efficient and side-channel resistant RSA implementation for 8-bit AVR microcontrollers. In: Proceedings of the 1st International Workshop on the Security of the Internet of Things (SECIOT 2010) (2010)

    Google Scholar 

  10. Liu, Z., Großschädl, J., Wong, D.S.: Low-weight primes for lightweight elliptic curve cryptography on 8-bit AVR processors. In: Lin, D., Xu, S., Yung, M. (eds.) The 9th China international Conference on Information Security and Cryptology–INSCRYPT 2013. LNCS. Springer, New York (2013)

    Google Scholar 

  11. Liu, Z., Großschädl, J.: New speed records for montgomery modular multiplication on 8-Bit AVR microcontrollers. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT. LNCS, vol. 8469, pp. 215–234. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  12. Liu, Z., Seo, H., Großschädl, J., Kim, H.: Efficient implementation of NIST-compliant elliptic curve cryptography for sensor nodes. In: Qing, S., Zhou, J., Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233, pp. 302–317. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Liu, Z., Wenger, E., Großschädl, J.: MoTE-ECC: energy-scalable elliptic curve cryptography for wireless sensor networks. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 361–379. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  14. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput. 44(170), 519–521 (1985)

    Article  MATH  Google Scholar 

  15. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  16. Scott, M.: Implementing cryptographic pairings. Lect. Notes Comput. Sci. 4575, 177 (2007)

    Google Scholar 

  17. Seo, H., Kim, H.: Multi-precision multiplication for public-key cryptography on embedded microprocessors. In: Lee, D.H., Yung, M. (eds.) WISA 2012. LNCS, vol. 7690, pp. 55–67. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Walter, C.D., Thompson, S.: Distinguishing exponent digits by observing modular subtractions. In: Topics in Cryptology CT RSA 2001, pp 192–207. Springer (2001)

    Google Scholar 

  19. Zhang, Y., Grossschadl, J.: Efficient prime-field arithmetic for elliptic curve cryptography on wireless sensor nodes. In: IEEE International Conference on Computer Science and Network Technology (ICCSNT), vol. 1, pp. 459–466 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Seo, H., Liu, Z., Nogami, Y., Choi, J., Kim, H. (2015). Improved Modular Multiplication for Optimal Prime Fields. In: Rhee, KH., Yi, J. (eds) Information Security Applications. WISA 2014. Lecture Notes in Computer Science(), vol 8909. Springer, Cham. https://doi.org/10.1007/978-3-319-15087-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15087-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15086-4

  • Online ISBN: 978-3-319-15087-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics