Nothing Special   »   [go: up one dir, main page]

Skip to main content

Discovery of Tampered Image with Robust Hashing

  • Conference paper
Advanced Data Mining and Applications (ADMA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8933))

Included in the following conference series:

Abstract

Tampered image discovery from similar images is a challenging problem of multimedia security. Aiming at this issue, we propose a robust image hashing with invariant moments. Specifically, the proposed hashing firstly converts the input image into a normalized image by interpolation, filtering and color space conversion. Then it divides the normalized image into overlapping blocks and extracts invariant moments of blocks to form a feature matrix. Finally, the feature matrix is compressed to make a short hash. Hash similarity is determined by measuring similarity between hash segments with correlation coefficient. Experimental results indicate that our hashing is robust against normal digital operations and can efficiently distinguish tampered images from similar images. Comparisons show that our hashing is better than some notable hashing algorithms in classification performances between robustness and content sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhu, X., Zhang, L., Huang, Z.: A sparse embedding and least variance encoding approach to hashing. IEEE Transactions on Image Processing 23, 3737–3750 (2014)

    Article  MathSciNet  Google Scholar 

  2. Ahmed, F., Siyal, M.Y., Abbas, V.U.: A secure and robust hash-based scheme for image authentication. Signal Processing 90, 1456–1470 (2010)

    Article  MATH  Google Scholar 

  3. Winter, C., Steinebach, M., Yannikos, Y.: Fast indexing strategies for robust image hashes. Digital Investigation 11, S27–S35 (2014)

    Google Scholar 

  4. Fridrich, J., Goljan, M.: Robust hash functions for digital watermarking. In: IEEE International Conference on Information Technology: Coding and Computing, pp. 178–183. IEEE Press, New York (2000)

    Google Scholar 

  5. Tang, Z., Wang, S., Zhang, X., Wei, W., Su, S.: Robust image hashing for tamper detection using non-negative matrix factorization. Journal of Ubiquitous Convergence and Technology 2, 18–26 (2008)

    Google Scholar 

  6. Lv, X., Wang, Z.J.: Reduced-reference image quality assessment based on perceptual image hashing. In: IEEE International Conference on Image Processing, pp. 4361–4364. IEEE Press, New York (2009)

    Google Scholar 

  7. Lu, W., Wu, M.: Multimedia forensic hash based on visual words. In: IEEE International Conference on Image Processing, pp. 989–992. IEEE Press, New York (2010)

    Google Scholar 

  8. Zhu, X., Huang, Z., Cheng, H., Cui, J., Shen, H.: Sparse hashing for fast multimedia search. ACM Transactions on Information Systems 31, 9 (2013)

    Article  Google Scholar 

  9. Zhu, X., Huang, Z., Cheng, H., Shen, H., Zhao, X.: Linear cross-modal hashing for efficient multimedia search. In: the 21st ACM International Conference on Multimedia, pp. 143–152. ACM, New York (2013)

    Chapter  Google Scholar 

  10. Tang, Z., Dai, Y., Zhang, X., Zhang, S.: Perceptual image hashing with histogram of color vector angles. In: Huang, R., Ghorbani, A.A., Pasi, G., Yamaguchi, T., Yen, N.Y., Jin, B. (eds.) AMT 2012. LNCS, vol. 7669, pp. 237–246. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Tang, Z., Wang, S., Zhang, X., Wei, W.: Structural feature-based image hashing and similarity metric for tampering detection. Fundamenta Informaticae 106, 75–91 (2011)

    MathSciNet  Google Scholar 

  12. Venkatesan, R., Koon, S.-M., Jakubowski, M.H., Moulin, P.: Robust image hashing.. In: IEEE International Conference on Image Processing, pp. 664–666. IEEE Press, New York (2000)

    Google Scholar 

  13. Lin, C.Y., Chang, S.F.: A robust image authentication system distinguishing JPEG compression from malicious manipulation. IEEE Transactions on Circuits System and Video Technology 11, 153–168 (2001)

    Article  Google Scholar 

  14. Swaminathan, A., Mao, Y., Wu, M.: Robust and secure image hashing. IEEE Transactions on Information Forensics and Security 1, 215–230 (2006)

    Article  Google Scholar 

  15. Monga, V., Mihcak, M.K.: Robust and secure image hashing via non-negative matrix factorizations. IEEE Transactions on Information Forensics and Security 2, 376–390 (2007)

    Article  Google Scholar 

  16. Ou, Y., Rhee, K.H.: A key-dependent secure image hashing scheme by using Radon transform. In: IEEE International Symposium on Intelligent Signal Processing and Communication Systems, pp. 595–598. IEEE Press, New York (2009)

    Google Scholar 

  17. Kang, L., Lu, C., Hsu, C.: Compressive sensing-based image hashing. In: IEEE International Conference on Image Processing, pp. 1285–1288. IEEE Press, New York (2009)

    Google Scholar 

  18. Li, Y., Lu, Z., Zhu, C., Niu, X.: Robust image hashing based on random Gabor filtering and dithered lattice vector quantization. IEEE Transactions on Image Processing 21, 1963–1980 (2012)

    Article  MathSciNet  Google Scholar 

  19. Tang, Z., Dai, Y., Zhang, X.: Perceptual hashing for color images using invariant moments. Applied Mathematics & Information Sciences 6, 643S–650S (2012)

    Google Scholar 

  20. Tang, Z., Dai, Y., Zhang, X., Huang, L., Yang, F.: Robust image hashing via colour vector angles and discrete wavelet transform. IET Image Processing 8, 142–149 (2014)

    Article  Google Scholar 

  21. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Transaction on Information Theory 8, 179–187 (1962)

    MATH  Google Scholar 

  22. Hsia, T.C.: A note on invariant moments in image processing. IEEE Transactions on Systems, Man, and Cybernetics 11, 831–834 (1981)

    Article  Google Scholar 

  23. Goshtasby, A.: Template matching in rotated images. IEEE Transactions on Pattern Analysis and Machine Intelligence 7, 338–344 (1985)

    Article  Google Scholar 

  24. Tang, Z., Zhang, X., Dai, X., Yang, J., Wu, T.: Robust image hash function using local color features. AEÜ-International Journal of Electronics and Communications 67, 717–722 (2013)

    Article  Google Scholar 

  25. Petitcolas, F.A.P.: Watermarking schemes evaluation. IEEE Signal Processing Magazine 17, 58–64 (2000)

    Article  Google Scholar 

  26. Ground Truth Database, http://www.cs.washington.edu/reseach/imagedatabase/groundtruth/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Tang, Z., Yu, J., Zhang, X., Zhang, S. (2014). Discovery of Tampered Image with Robust Hashing. In: Luo, X., Yu, J.X., Li, Z. (eds) Advanced Data Mining and Applications. ADMA 2014. Lecture Notes in Computer Science(), vol 8933. Springer, Cham. https://doi.org/10.1007/978-3-319-14717-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14717-8_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14716-1

  • Online ISBN: 978-3-319-14717-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics