Nothing Special   »   [go: up one dir, main page]

Skip to main content

Text Detection in Natural Images Using Localized Stroke Width Transform

  • Conference paper
MultiMedia Modeling (MMM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8935))

Included in the following conference series:

Abstract

How to effectively and efficiently detect texts in natural scene images is a challenging problem. This paper presents a novel text detection method using localized stroke width transform. Due to the utilization of an adaptive image binarization approach and the implementation of stroke width transform in local regions, our method markedly reduces the demand of contrast between texts and backgrounds, and becomes considerably robust against edge detection results. Experiments on the dataset of ICDAR 2013 robust reading competition demonstrate that the proposed method outperforms other state-of-the-art approaches in the application of text detection in natural scene images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, X., Yuille, A.: Detecting and reading text in natural scenes. In: Proc. CVPR 2014 (2004)

    Google Scholar 

  2. Gllavata, J., Ewerth, R., Freisleben, B.: Text detection in images based on unsupervised classification of high-frequency wavelet coefficients. In: Proc. ICPR 2004, pp. 425–428 (2004)

    Google Scholar 

  3. Kim, K.I., Jung, K., Kim, J.H.: Texture-based approach for text detection in images using support vector machines and continuously adaptive mean shift algorithm. IEEE Trans. PAMI 25(12), 1631–1639 (2003)

    Article  MathSciNet  Google Scholar 

  4. Epshtein, B., Ofek, E., Wexler, Y.: Detecting text in natural scenes with stroke width transform. In: Proc. CVPR 2010, pp. 2963–2970 (2010)

    Google Scholar 

  5. Neumann, L., Matas, J.: A method for text localization and recognition in real-world images. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part III. LNCS, vol. 6494, pp. 770–783. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Jain, A., Yu, B.: Automatic text location in images and video frames. Pattern Recognition 31(12), 2055–2076 (1998)

    Article  Google Scholar 

  7. Pan, Y., Hou, X., Liu, C.: A hybrid approach to detect and localize texts in natural scene images. IEEE Trans. IP 20(3), 800–813 (2011)

    MathSciNet  Google Scholar 

  8. Yao, C., Bai, X., Liu, W., Ma, Y., Tu, Z.: Detecting texts of arbitrary orientations in natural images. In: Proc. CVPR 2012, pp. 1083–1090 (2012)

    Google Scholar 

  9. Karatzas, D., et al.: ICDAR 2013 Robust Reading Competition. In: Proc. ICDAR 2013, pp. 1484–1493 (2013)

    Google Scholar 

  10. Grundland, M., Dodgson, N.: Decolorize: fast, contrast enhancing, color to grayscale conversion. Pattern Recognition 40(11), 2891–2896 (2007)

    Article  Google Scholar 

  11. Canny, J.F.: A computational approach to edge detection. IEEE Trans. PAMI 6, 679–698 (1986)

    Article  Google Scholar 

  12. Lowe, D.: Object recognition from local scale-invariant features. In: Proc. ICCV 1999, pp. 1150–1157 (1999)

    Google Scholar 

  13. http://dag.cvc.uab.es/icdar2013competition/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dong, W., Lian, Z., Tang, Y., Xiao, J. (2015). Text Detection in Natural Images Using Localized Stroke Width Transform. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds) MultiMedia Modeling. MMM 2015. Lecture Notes in Computer Science, vol 8935. Springer, Cham. https://doi.org/10.1007/978-3-319-14445-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14445-0_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14444-3

  • Online ISBN: 978-3-319-14445-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics