Abstract
Adaptive visualizations reduces the required cognitive effort to comprehend interactive visual pictures and amplify cognition. Although the research on adaptive visualizations grew in the last years, the existing approaches do not consider the transformation pipeline from data to visual representation for a more efficient and effective adaptation. Further todays systems commonly require an initial training by experts from the field and are limited to adaptation based either on user behavior or on data characteristics. A combination of both is not proposed to our knowledge. This paper introduces an enhanced instantiation of our previously proposed model that combines both: involving different influencing factors for and adapting various levels of visual peculiarities, on content, visual layout, visual presentation, and visual interface. Based on data type and users’ behavior, our system adapts a set of applicable visualization types. Moreover, retinal variables of each visualization type are adapted to meet individual or canonical requirements on both, data types and users’ behavior. Our system does not require an initial expert modeling.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahn, J.W., Brusilovsky, P.: Adaptive visualization for exploratory information retrieval. Information Processing & Management 49, 1139–1164 (2013)
Steichen, B., Carenini, G., Conati, C.: User-adaptive information visualization: using eye gaze data to infer visualization tasks and user cognitive abilities. In: Proceedings IUI, pp. 317–328. ACM, New York (2013)
Gotz, D., When, Z., Lu, J., Kissa, P., Cao, N., Qian, W.H., Liu, S.X., Zhou, M.X.: Harvest: An intelligent visual analytic tool for the masses. In: Proceedings of IVITA 2010, pp. 1–4. ACM, New York (2010)
Ware, C.: Information Visualization Perception for Design. Morgan Kaufmann, Elsevier (2013)
Mackinlay, J.: Automating the design of graphical presentations of relational information. ACM Trans. Graph. 5, 110–141 (1986)
Mackinlay, J., Hanrahan, P., Stolte, C.: Show me: Automatic presentation for visual analysis. IEEE Transactions on Visualization and Computer Graphics 13, 1137–1144 (2007)
Bertin, J.: Semiology of graphics. University of Wisconsin Press (1983)
Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cognitive Psychology 12(1), 97–136 (1980)
Nazemi, K., Stab, C., Kuijper, A.: A reference model for adaptive visualization systems. In: Jacko, J. (ed.) Human-Computer Interaction, Part I, HCII 2011. LNCS, vol. 6761, pp. 480–489. Springer, Heidelberg (2011)
Nazemi, K., Kohlhammer, J.: Visual variables in adaptive visualizations. In: Extended Proceedings of UMAP 2013. CEUR Workshop Proceedings, vol. 997 (2013) ISSN 1613-0073
Golemati, M., Halatsis, C., Vassilakis, C., Katifori, A., Lepouras, G.: A context-based adaptive visualization environment. In: Proceedings of the Conference on Information Visualization, IV 2006, pp. 62–67. IEEE Computer Society, Washington, DC (2006)
da Silva, I., Santucci, G., del Sasso Freitas, C.: Ontology Visualization: One Size Does Not Fit All. In: EuroVA 2012: International Workshop on Visual Analytics, pp. 91–95. Eurographics Association (2012)
Heath, T., Bizer, C.: Linked Data – Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan & Claypool Publishers (2011)
Mendes, P.N., Jakob, M., Bizer, C.: Dbpedia for nlp: A multilingual cross-domain knowledge base. In: Proceedings of LREC 2012, Istanbul, Turkey (2012)
Marchionini, G.: Exploratory search: from finding to understanding. Commun. ACM 49, 41–46 (2006)
Nazemi, K., Breyer, M., Forster, J., Burkhardt, D., Kuijper, A.: Interacting with semantics: A user-centered visualization adaptation based on semantics data. In: Human Interface and the Management of Information. Interacting with Information, pp. 239–248 (2011)
Freebase consortium: Freebase api. build intelligent apps with freebase data (2013), https://developers.google.com/freebase/ (accessed August 2013)
Sleeman, D.: Umfe: a user modelling front-end subsystem. Int. J. Man-Mach. Stud. 23, 71–88 (1985)
Brusilovsky, P., Millán, E.: User models for adaptive hypermedia and adaptive educational systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 3–53. Springer, Heidelberg (2007)
Nazemi, K., Stab, C., Fellner, D.W.: Interaction analysis: An algorithm for interaction prediction and activity recognition in adaptive systems. In: Proceedings of IEEE International Conference on Intelligent Computing and Intelligent Systems, pp. 607–612. IEEE Press, New York (2010)
Nazemi, K., Retz, W., Kohlhammer, J., Kuijper, A.: User similarity and deviation analysis for adaptive visualizations. In: Yamamoto, S. (ed.) HCI 2014, Part I. LNCS, vol. 8521, pp. 64–75. Springer, Heidelberg (2014)
Nazemi, K., Retz, R., Bernard, J., Kohlhammer, J., Fellner, D.: Adaptive semantic visualization for bibliographic entries. In: Bebis, G., et al. (eds.) ISVC 2013, Part II. LNCS, vol. 8034, pp. 13–24. Springer, Heidelberg (2013)
Guo, L., Peng, Q.: A combinative similarity computing measure for collaborative filtering. In: Proceedings of ICCSEE 2013. Advances in Intelligent Systems Research, pp. 1921–1924. Atlantis Press (2013)
Brusilovsky, P., Wook Ahn, J., Dumitriu, T., Yudelson, M.: Adaptive knowledge-based visualization for accessing educational examples. In: Tenth International Conference on Information Visualization, IV 2006, pp. 142–150 (2006)
Wolfe, J.M.: Guided search 4.0: Current progress with a model of visual search. In: Gray, W. (ed.) Integrated Models of CoSystems, pp. 99–119 (2007)
Rensink, R.A.: Change detection. Annual Review of Psychology 53, 245–277 (2002)
Google Press Center: The Knowledge Graph (2013), http://www.google.com/intl/en/insidesearch/features/search/knowledge.html (accessed August 2013)
Nazemi, K., Kuijper, A., Hutter, M., Kohlhammer, J., Fellner, D.W.: Measuring context relevance for adaptive semantics visualizations. In: Proceedings of I-KNOW 2014, ACM DL (to appear, 2014)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Nazemi, K., Burkhardt, D., Retz, R., Kuijper, A., Kohlhammer, J. (2014). Adaptive Visualization of Linked-Data. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2014. Lecture Notes in Computer Science, vol 8888. Springer, Cham. https://doi.org/10.1007/978-3-319-14364-4_84
Download citation
DOI: https://doi.org/10.1007/978-3-319-14364-4_84
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-14363-7
Online ISBN: 978-3-319-14364-4
eBook Packages: Computer ScienceComputer Science (R0)