Nothing Special   »   [go: up one dir, main page]

Skip to main content

Adaptive Visualization of Linked-Data

  • Conference paper
Advances in Visual Computing (ISVC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8888))

Included in the following conference series:

  • 2523 Accesses

Abstract

Adaptive visualizations reduces the required cognitive effort to comprehend interactive visual pictures and amplify cognition. Although the research on adaptive visualizations grew in the last years, the existing approaches do not consider the transformation pipeline from data to visual representation for a more efficient and effective adaptation. Further todays systems commonly require an initial training by experts from the field and are limited to adaptation based either on user behavior or on data characteristics. A combination of both is not proposed to our knowledge. This paper introduces an enhanced instantiation of our previously proposed model that combines both: involving different influencing factors for and adapting various levels of visual peculiarities, on content, visual layout, visual presentation, and visual interface. Based on data type and users’ behavior, our system adapts a set of applicable visualization types. Moreover, retinal variables of each visualization type are adapted to meet individual or canonical requirements on both, data types and users’ behavior. Our system does not require an initial expert modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahn, J.W., Brusilovsky, P.: Adaptive visualization for exploratory information retrieval. Information Processing & Management 49, 1139–1164 (2013)

    Article  Google Scholar 

  2. Steichen, B., Carenini, G., Conati, C.: User-adaptive information visualization: using eye gaze data to infer visualization tasks and user cognitive abilities. In: Proceedings IUI, pp. 317–328. ACM, New York (2013)

    Google Scholar 

  3. Gotz, D., When, Z., Lu, J., Kissa, P., Cao, N., Qian, W.H., Liu, S.X., Zhou, M.X.: Harvest: An intelligent visual analytic tool for the masses. In: Proceedings of IVITA 2010, pp. 1–4. ACM, New York (2010)

    Google Scholar 

  4. Ware, C.: Information Visualization Perception for Design. Morgan Kaufmann, Elsevier (2013)

    Google Scholar 

  5. Mackinlay, J.: Automating the design of graphical presentations of relational information. ACM Trans. Graph. 5, 110–141 (1986)

    Article  Google Scholar 

  6. Mackinlay, J., Hanrahan, P., Stolte, C.: Show me: Automatic presentation for visual analysis. IEEE Transactions on Visualization and Computer Graphics 13, 1137–1144 (2007)

    Article  Google Scholar 

  7. Bertin, J.: Semiology of graphics. University of Wisconsin Press (1983)

    Google Scholar 

  8. Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cognitive Psychology 12(1), 97–136 (1980)

    Article  Google Scholar 

  9. Nazemi, K., Stab, C., Kuijper, A.: A reference model for adaptive visualization systems. In: Jacko, J. (ed.) Human-Computer Interaction, Part I, HCII 2011. LNCS, vol. 6761, pp. 480–489. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Nazemi, K., Kohlhammer, J.: Visual variables in adaptive visualizations. In: Extended Proceedings of UMAP 2013. CEUR Workshop Proceedings, vol. 997 (2013) ISSN 1613-0073

    Google Scholar 

  11. Golemati, M., Halatsis, C., Vassilakis, C., Katifori, A., Lepouras, G.: A context-based adaptive visualization environment. In: Proceedings of the Conference on Information Visualization, IV 2006, pp. 62–67. IEEE Computer Society, Washington, DC (2006)

    Google Scholar 

  12. da Silva, I., Santucci, G., del Sasso Freitas, C.: Ontology Visualization: One Size Does Not Fit All. In: EuroVA 2012: International Workshop on Visual Analytics, pp. 91–95. Eurographics Association (2012)

    Google Scholar 

  13. Heath, T., Bizer, C.: Linked Data – Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan & Claypool Publishers (2011)

    Google Scholar 

  14. Mendes, P.N., Jakob, M., Bizer, C.: Dbpedia for nlp: A multilingual cross-domain knowledge base. In: Proceedings of LREC 2012, Istanbul, Turkey (2012)

    Google Scholar 

  15. Marchionini, G.: Exploratory search: from finding to understanding. Commun. ACM 49, 41–46 (2006)

    Article  Google Scholar 

  16. Nazemi, K., Breyer, M., Forster, J., Burkhardt, D., Kuijper, A.: Interacting with semantics: A user-centered visualization adaptation based on semantics data. In: Human Interface and the Management of Information. Interacting with Information, pp. 239–248 (2011)

    Google Scholar 

  17. Freebase consortium: Freebase api. build intelligent apps with freebase data (2013), https://developers.google.com/freebase/ (accessed August 2013)

  18. Sleeman, D.: Umfe: a user modelling front-end subsystem. Int. J. Man-Mach. Stud. 23, 71–88 (1985)

    Article  MathSciNet  Google Scholar 

  19. Brusilovsky, P., Millán, E.: User models for adaptive hypermedia and adaptive educational systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 3–53. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Nazemi, K., Stab, C., Fellner, D.W.: Interaction analysis: An algorithm for interaction prediction and activity recognition in adaptive systems. In: Proceedings of IEEE International Conference on Intelligent Computing and Intelligent Systems, pp. 607–612. IEEE Press, New York (2010)

    Google Scholar 

  21. Nazemi, K., Retz, W., Kohlhammer, J., Kuijper, A.: User similarity and deviation analysis for adaptive visualizations. In: Yamamoto, S. (ed.) HCI 2014, Part I. LNCS, vol. 8521, pp. 64–75. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  22. Nazemi, K., Retz, R., Bernard, J., Kohlhammer, J., Fellner, D.: Adaptive semantic visualization for bibliographic entries. In: Bebis, G., et al. (eds.) ISVC 2013, Part II. LNCS, vol. 8034, pp. 13–24. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Guo, L., Peng, Q.: A combinative similarity computing measure for collaborative filtering. In: Proceedings of ICCSEE 2013. Advances in Intelligent Systems Research, pp. 1921–1924. Atlantis Press (2013)

    Google Scholar 

  24. Brusilovsky, P., Wook Ahn, J., Dumitriu, T., Yudelson, M.: Adaptive knowledge-based visualization for accessing educational examples. In: Tenth International Conference on Information Visualization, IV 2006, pp. 142–150 (2006)

    Google Scholar 

  25. Wolfe, J.M.: Guided search 4.0: Current progress with a model of visual search. In: Gray, W. (ed.) Integrated Models of CoSystems, pp. 99–119 (2007)

    Google Scholar 

  26. Rensink, R.A.: Change detection. Annual Review of Psychology 53, 245–277 (2002)

    Article  Google Scholar 

  27. Google Press Center: The Knowledge Graph (2013), http://www.google.com/intl/en/insidesearch/features/search/knowledge.html (accessed August 2013)

  28. Nazemi, K., Kuijper, A., Hutter, M., Kohlhammer, J., Fellner, D.W.: Measuring context relevance for adaptive semantics visualizations. In: Proceedings of I-KNOW 2014, ACM DL (to appear, 2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Nazemi, K., Burkhardt, D., Retz, R., Kuijper, A., Kohlhammer, J. (2014). Adaptive Visualization of Linked-Data. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2014. Lecture Notes in Computer Science, vol 8888. Springer, Cham. https://doi.org/10.1007/978-3-319-14364-4_84

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14364-4_84

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14363-7

  • Online ISBN: 978-3-319-14364-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics