Nothing Special   »   [go: up one dir, main page]

Skip to main content

Spatio-temporal Level-Set Based Cell Segmentation in Time-Lapse Image Sequences

  • Conference paper
Advances in Visual Computing (ISVC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8888))

Included in the following conference series:

Abstract

Automated segmentation and tracking of cells in time-lapse imaging is a process of fundamental significance in several biomedical applications. In this work our interest is focused on cell segmentation over a set of fluorescence microscopy images with varying levels of difficulty with respect to cell density, resolution, contrast, and signal-to-noise ratio. We utilize a region-based approach to curve evolution based on the level-set formulation. We introduce and test the use of temporal linking for level-set initialization to improve the robustness and computational time of level-set convergence. We validate our segmentation approach against manually segmented images provided by the Cell Tracking Challenge consortium. Our method produces encouraging segmentation results with an average DICE score of 0.78 over a variety of simulated and real sequences and speeds up the convergence rate by an average factor of 10.2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Eils, R., Athale, C.: Computational imaging in cell biology. J. Cell. Biol. 161(3), 477–481 (2003)

    Article  Google Scholar 

  2. Stephens, D.J., Allan, V.J.: Light microscopy techniques for live cell imaging. Science 300(5616), 82–86 (2003)

    Article  Google Scholar 

  3. Meijering, E., Dzyubachyk, O., Smal, I.: Methods for cell and particle tracking. Methods Enzymo. 504, 183–200 (2012)

    Article  Google Scholar 

  4. Dzyubachyk, O., van Cappellen, W.A., Essers, J., Niessen, W.J., Meijering, E.H.W.: Advanced Level-Set-Based Cell Tracking in Time-Lapse Fluorescence Microscopy. IEEE Trans. Med. Imaging 29(3), 852–867 (2010)

    Article  Google Scholar 

  5. Yang, X., Li, H., Zhou, X.: Nuclei Segmentation Using Marker-Controlled Watershed, Tracking Using Mean-Shift, and Kalman Filter in Time-Lapse Microscopy. IEEE Transactions on Circuits and Systems I: Regular Papers 53(11), 2405–2414 (2006)

    Article  MathSciNet  Google Scholar 

  6. Maška, M., et al.: A benchmark for comparison of cell tracking algorithms. Bioinformatics 30(11), 1609–1617 (2014)

    Article  Google Scholar 

  7. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)

    Article  Google Scholar 

  8. Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape Modeling with Front Propagation: A Level-set Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 17, 158–175 (1995)

    Article  Google Scholar 

  9. Cremers, D., Rousson, M., Deriche, R.: A Review of Statistical Approaches to Level-set Segmentation: Integrating Color, Texture, Motion and Shape. International Journal of Computer Vision 72(2), 195–215 (2006)

    Article  Google Scholar 

  10. Chan, T.F., Vese, L.A.: Active Contours Without Edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  11. Cell Tracking Challenge (2013), http://www.grand-challenge.org/

  12. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)

    Article  Google Scholar 

  13. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. on Pure and Applied Mathematics 42(5), 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Boukari, F., Makrogiannis, S. (2014). Spatio-temporal Level-Set Based Cell Segmentation in Time-Lapse Image Sequences. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2014. Lecture Notes in Computer Science, vol 8888. Springer, Cham. https://doi.org/10.1007/978-3-319-14364-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14364-4_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14363-7

  • Online ISBN: 978-3-319-14364-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics