Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Peer-to-Peer Dynamic Multi-objective Particle Swarm Optimizer

  • Conference paper
Mining Intelligence and Knowledge Exploration

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8284))

Abstract

Multi-objective optimization problem is an important part in solving a wide number of engineering and scientific applications. To-date, most of the research has been conducted in solving static multi-objective problems where the decision variables and/or the objective functions do not change over a period of time. In a dynamic environment, the particles non dominated solution set during a specific iteration may no longer be valid due to change in the underlying system. As a result, traditional techniques for solving static multi-objective functions cannot be applied for solving dynamic multi-objective functions. Further, with the increase in the number of variables/objective functions, a single system based optimizer will take a long time to compute the non-dominated solution set. In this paper, we present a peer-to-peer distributed particle swarm optimization algorithm that tracks the change in the underlying system and is able to produce a diversified and dense non- dominated set using a network of peer-to-peer system. Our algorithms are tested using a set of known benchmark problems and results are reported. To our knowledge, this algorithm is the first of its kind in the areas of peer-to-peer particle swarm optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Helbig, M.: Solving dynamic multi-objective optimisation problems using vector evaluated particle swarm optimisation. PhD thesis, University of Pretoria (2012)

    Google Scholar 

  2. Wang, Y., Li, B.: Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 630–637. IEEE (2009)

    Google Scholar 

  3. Tang, M., Huang, Z., Chen, G.: The construction of dynamic multi-objective optimization test functions. In: Kang, L., Liu, Y., Zeng, S. (eds.) ISICA 2007. LNCS, vol. 4683, pp. 72–79. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the 1st International Conference on Genetic Algorithms, pp. 93–100. L. Erlbaum Associates Inc. (1985)

    Google Scholar 

  5. Wang, Y., Dang, C.: An evolutionary algorithm for dynamic multi-objective optimization. Applied Mathematics and Computation 205(1), 6–18 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Shang, R., Jiao, L., Gong, M., Lu, B.: Clonal selection algorithm for dynamic multiobjective optimization. In: Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y.-m., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 2005. LNCS (LNAI), vol. 3801, pp. 846–851. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Zeng, S.Y., Chen, G., Zheng, L., Shi, H., de Garis, H., Ding, L., Kang, L.: A dynamic multi-objective evolutionary algorithm based on an orthogonal design. In: IEEE Congress on Evolutionary Computation, CEC 2006, pp. 573–580. IEEE (2006)

    Google Scholar 

  8. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech concurrent computation program, C3P Report 826 (1989)

    Google Scholar 

  9. Zhang, Z., Qian, S.: Artificial immune system in dynamic environments solving time-varying non-linear constrained multi-objective problems. Soft Computing 15(7), 1333–1349 (2011)

    Article  Google Scholar 

  10. Cámara, M., Ortega, J., Toro, F.J.: Parallel processing for multi-objective optimization in dynamic environments. In: IEEE International Parallel and Distributed Processing Symposium, IPDPS 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  11. Cámara, M., Ortega, J., de Toro, F.: Approaching dynamic multi-objective optimization problems by using parallel evolutionary algorithms. In: Coello Coello, C.A., Dhaenens, C., Jourdan, L. (eds.) Advances in Multi-Objective Nature Inspired Computing. SCI, vol. 272, pp. 63–86. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Ruiz, I.R.: Sinta-cc: Adaptive intelligent systems for modelling, prediction and dynamic optimization in clusters of computers tin2004-01419

    Google Scholar 

  13. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM Computer Communication Review 31, 149–160 (2001)

    Article  Google Scholar 

  14. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Farina, M., Deb, K., Amato, P.: Dynamic multiobjective optimization problems: test cases, approximations, and applications. IEEE Transactions on Evolutionary Computation 8(5), 425–442 (2004)

    Article  Google Scholar 

  16. Koo, W.T., Goh, C.K., Tan, K.C.: A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment. Memetic Computing 2(2), 87–110 (2010)

    Article  Google Scholar 

  17. Goh, C.-K., Tan, K.C.: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Transactions on Evolutionary Computation 13(1), 103–127 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Dewan, H., Nayak, R.B., Devi, V.S. (2013). A Peer-to-Peer Dynamic Multi-objective Particle Swarm Optimizer. In: Prasath, R., Kathirvalavakumar, T. (eds) Mining Intelligence and Knowledge Exploration. Lecture Notes in Computer Science(), vol 8284. Springer, Cham. https://doi.org/10.1007/978-3-319-03844-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03844-5_46

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03843-8

  • Online ISBN: 978-3-319-03844-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics