Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Ant Colony Optimization Algorithm for the Min-Degree Constrained Minimum Spanning Tree Problem

  • Conference paper
Swarm, Evolutionary, and Memetic Computing (SEMCCO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8298))

Included in the following conference series:

  • 2591 Accesses

Abstract

Given a connected edge-weighted undirected graph, the min-degree constrained minimum spanning tree (MDCMST) problem seeks on this graph a spanning tree of least cost in which every non-leaf node have a degree of at least d in the spanning tree. This problem is \(\mathcal{NP}\)-Hard for \(3 \leq d \leq \lfloor \frac{n}{2} \rfloor\) where n is the number of nodes in the graph. In this paper, we have proposed an ant colony optimization based approach to this problem. The proposed approach has been tested on Euclidean and random instances both. Computational results show the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Almeida, A.M., Martins, P., Souza, M.C.: Min-Degree Constrained Minimum Spanning Tree Problem: Complexity, Proprieties, and Formulations. Technical Report 6/2006, Centre for Operational Research, University of Lisboa (2006)

    Google Scholar 

  2. Almeida, A.M., Martins, P., Souza, M.C.: md-MST is \(\mathcal{NP}\)-Hard for d ≥ 3. Electronic Notes in Discrete Mathematics 36, 9–15 (2010)

    Article  Google Scholar 

  3. Akgün, I., Tansel, B.C.: Min-Degree Constrained Minimum Spanning Tree Problem: New Formulation via Miller-Tucker-Zemlin Constraints. Computers & Operations Research 37, 72–82 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Miller, C., Tucker, A., Zemlin, R.: Integer Programming Formulation of Travelling Salesman Problems. Journal of ACM 7, 326–329 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  5. Murthy, V., V.R., Singh, A.: Solving the Min-Degree Constrained Minimum Spanning Tree Problem Using Heuristic and Metaheuristic Approaches. In: Proceedings of the Second IEEE International Conference on Parallel, Distributed and Grid Computing (PDGC 2012), pp. 716–720. IEEE Press (2012)

    Google Scholar 

  6. Dorigo, M., Maniezzo, V., Colorni, A.: Positive Feedback as a Search Strategy. Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy (1991)

    Google Scholar 

  7. Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a Colony of Cooperating Agents. IEEE Transactions on Systems, Man and Cybernetics – Part B 26, 29–42 (1996)

    Article  Google Scholar 

  8. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  9. Sundar, S., Singh, A., Rossi, A.: New Heuristics for Two Bounded-Degree Spanning Tree Problems. Information Sciences 195, 226–240 (2012)

    Article  MathSciNet  Google Scholar 

  10. Potluri, A., Singh, A.: Hybrid Metaheuristic Algorithms for Minimum Weight Dominating Set. Applied Soft Computing 13, 76–88 (2013)

    Article  Google Scholar 

  11. Sundar, S., Singh, A.: New Heuristic Approaches for the Dominating Tree Problem. Applied Soft Computing (in press, 2013), doi:10.1016/j.asoc.2013.07.014

    Google Scholar 

  12. Julstrom, B.A.: Codings and Operators in Two Genetic Algorithms for the Leaf-Constrained Minimum Spanning Tree Problem. International Journal of Applied Mathematics and Computer Science 14, 385–396 (2004)

    MATH  MathSciNet  Google Scholar 

  13. Singh, A., Baghel, A.S.: New Metaheuristic Approaches for the Leaf-Constrained Minimum Spanning Tree Problem. Asia-Pacific Journal of Operational Research 25, 575–589 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Singh, A.: An Artificial Bee Colony Algorithm for the Leaf-Constrained Minimum Spanning Tree Problem. Applied Soft Computing 9, 625–631 (2009)

    Article  Google Scholar 

  15. Solnon, C., Fenet, S.: A Study of ACO Capabilities for Solving the Maximum Clique Problem. Journal of Heuristics 12, 155–180 (2006)

    Article  MATH  Google Scholar 

  16. Julstrom, B.A.: The Blob code is Competitive with Edge-Sets in Genetic Algorithms for the Minimum Routing Cost Spanning Tree Problem. In: Proceedings of the Genetic and Evolutionary Computation Conference 2005 (GECCO 2005), vol. 1, pp. 585–590. ACM Press, New York (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Murthy, V.V.R., Singh, A. (2013). An Ant Colony Optimization Algorithm for the Min-Degree Constrained Minimum Spanning Tree Problem. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Dash, S.S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2013. Lecture Notes in Computer Science, vol 8298. Springer, Cham. https://doi.org/10.1007/978-3-319-03756-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03756-1_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03755-4

  • Online ISBN: 978-3-319-03756-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics