Nothing Special   »   [go: up one dir, main page]

Skip to main content

Differential Evolution and Bacterial Foraging Optimization Based Dynamic Economic Dispatch with Non-smooth Fuel Cost Functions

  • Conference paper
Swarm, Evolutionary, and Memetic Computing (SEMCCO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8298))

Included in the following conference series:

Abstract

The Dynamic economic dispatch (DED) is an optimization problem with an objective to determine the optimal combination of power outputs for all generating units over a certain period of time in order to minimize the total fuel cost while satisfying dynamic operational constraints and load demand in each interval. Recently social foraging behavior of Escherichia coli bacteria has been explored to develop a novel algorithm for distributed optimization and control. The Bacterial Foraging Optimization Algorithm (BFOA) is currently gaining popularity in the community of researchers, for its effectiveness in solving certain difficult real-world optimization problems. This article comes up with a hybrid approach involving Differential Evolution (DE) and BFOA algorithm for solving the DED problem of generating units considering valve-point effects. The proposed hybrid algorithm has been extensively compared with the classical approach and those reported in the literature. The new method is shown to be statistically significantly better on two test systems consisting of five and ten generating units.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Passino, K.M.: Biomimicry of Bacterial Foraging for Distributed Optimization and Control. IEEE Control Systems Magazine, 52–67 (2002)

    Google Scholar 

  2. Mishra, S.: A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation. IEEE Trans. on Evolutionary Computation 9(1), 61–73 (2005)

    Article  Google Scholar 

  3. Tripathy, M., Mishra, S., Lai, L.L., Zhang, Q.P.: Transmission Loss Reduction Based on FACTS and Bacteria Foraging Algorithm. In: PPSN, pp. 222-231 (2006)

    Google Scholar 

  4. Kim, D.H., Cho, C.H.: Bacterial Foraging Based Neural Network Fuzzy Learning. In: IICAI, pp. 2030-2036 (2005)

    Google Scholar 

  5. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Harbor (1975)

    Google Scholar 

  6. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  7. Storn, R., Price, K.: Differential evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11(4), 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kim, D.H., Abraham, A., Cho, J.H.: A hybrid genetic algorithm and bacterial foraging approach for global optimization. Information Sciences 177(18), 3918–3937 (2007)

    Article  Google Scholar 

  9. Mladenovic, P., Kovacevic-Vuijcic, C.: Solving spread-spectrum radar polyphase code design problem by tabu search and variable neighborhood search. European Journal of Operational Research 153, 389–399 (2003)

    Article  Google Scholar 

  10. Stephens, D.W., Krebs, J.R.: Foraging Theory. Princeton University Press, Princeton (1986)

    Google Scholar 

  11. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation 3(2), 82–102 (1999)

    Article  Google Scholar 

  12. Angeline, P.J.: Evolutionary optimization versus particle swarm optimization: Philosophy and the performance difference. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 84–89. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  13. Ratnaweera, A., Halgamuge, K.S.: Self organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation 8(3), 240–254 (2004)

    Article  Google Scholar 

  14. Attaviriyanupap, D., Kita, H., Tanaka, E., Hasegawa, J.: A hybrid EP and SQP for dynamic economic dispatch with nonsmooth incremental fuel cost function. IEEE Trans. Power Syst. 17(2), 411–416 (2002)

    Article  Google Scholar 

  15. Granelli, G.P., Marannino, P., Montagna, M., Silvestri, A.: Fast and efficient gradient projection algorithm for dynamic generation dispatching. In: Proc. Inst. Elect. Eng., Gener. Transm. Distrib., vol. 136(5), pp. 295–302 (1989)

    Google Scholar 

  16. Li, F., Morgan, R., Williams, D.: Hybrid genetic approaches to ramping rate constrained dynamic economic dispatch. Elect. Power Syst. Res. 43(2), 97–103 (1997)

    Article  Google Scholar 

  17. Han, X.S., Gooi, H.B., Kirschen, D.S.: Dynamic economic dispatch: feasible and optimal solutions. IEEE Trans. Power Syst. 16(1), 22–28 (2001)

    Article  Google Scholar 

  18. Attaviriyanupap, D., Kita, H., Tanaka, E., Hasegawa, J.: A hybrid EP and SQP for dynamic economic dispatch with nonsmooth incremental fuel cost function. IEEE Trans. Power Syst. 17(2), 411–416 (2002)

    Article  Google Scholar 

  19. Aruldoss Albert Victoire, T., Ebenezer Jeyakumar, A.: Deterministically guided PSO for dynamic dispatch considering valve-point effect. Elect. Power Syst. Res. 73(3), 313–322 (2005)

    Article  Google Scholar 

  20. Aruldoss Albert Victoire, T., Ebenezer Jeyakumar, A.: Reserve constrained dynamic dispatch of units with valve-point effects. IEEE Trans. Power Syst. 20(3), 1273–1282 (2005)

    Google Scholar 

  21. Storn, R., Price, K.: Differential evolution – A simple and efficient heuristic for global optimization over continuous space. J. Global Optimization 11, 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Vaisakh, K., Praveena, P., Sujatah, K.N. (2013). Differential Evolution and Bacterial Foraging Optimization Based Dynamic Economic Dispatch with Non-smooth Fuel Cost Functions. In: Panigrahi, B.K., Suganthan, P.N., Das, S., Dash, S.S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2013. Lecture Notes in Computer Science, vol 8298. Springer, Cham. https://doi.org/10.1007/978-3-319-03756-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03756-1_52

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03755-4

  • Online ISBN: 978-3-319-03756-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics