Abstract
We propose a new video manifold learning method for event recognition and anomaly detection in crowd scenes. A novel feature descriptor is proposed to encode regional optical flow features of video frames, where quantization and binarization of the feature code are employed to improve the differentiation of crowd motion patterns. Based on the new feature code, we introduce a new linear dimensionality reduction algorithm called “Spatial-Temporal Locality Preserving Projections” (STLPP). The generated low-dimensional video manifolds preserve both intrinsic spatial and temporal properties. Extensive experiments have been carried out on two benchmark datasets and our results compare favourably with the state of the art.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Nguyen, H.T., Ji, Q., Smeulders, A.W.: Spatio-temporal context for robust multitarget tracking. IEEE TPAMI 29(1), 52–64 (2007)
Andrade, E.L., Blunsden, S., Fisher, R.B.: Modelling crowd scenes for event detection. In: Proc. ICPR 2006, vol. 1, pp. 175–178 (2006)
Adam, A., Rivlin, E., Shimshoni, I., Reinitz, D.: Robust real-time unusual event detection using multiple fixed-location monitors. IEEE TPAMI 30(3), 555–560 (2008)
Kratz, L., Nishino, K.: Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. In: Proc. CVPR 2009, pp. 1446–1453 (2009)
Ke, Y., Sukthankar, R., Hebert, M.: Event detection in crowded videos. In: Proc. ICCV 2007, pp. 1–8 (2007)
Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: Proc. CVPR 2009, pp. 935–942 (2009)
Wu, S., Moore, B.E., Shah, M.: Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes. In: Proc. CVPR 2010, pp. 2054–2060 (2010)
Cong, Y., Yuan, J., Liu, J.: Sparse reconstruction cost for abnormal event detection. In: Proc. CVPR 2011, pp. 3449–3456 (2011)
Tziakos, I., Cavallaro, A., Xu, L.Q.: Event monitoring via local motion abnormality detection in non-linear subspace. Neurocomputing 73(10), 1881–1891 (2010)
Thida, M., Eng, H.-L., Dorothy, M., Remagnino, P.: Learning video manifold for segmenting crowd events and abnormality detection. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 439–449. Springer, Heidelberg (2011)
Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)
Thida, M., Eng, H.L., Monekosso, D.N., Remagnino, P.: Learning video manifolds for content analysis of crowded scenes. IPSJ Transactions on Computer Vision and Applications 4, 71–77 (2012)
Liu, C., Freeman, W.T., Adelson, E.H., Weiss, Y.: Human-assisted motion annotation. In: Proc. CVPR 2008, pp. 1–8 (2008)
Niyogi, X.: Locality preserving projections. Neural Information Processing Systems 16, 153 (2004)
Golub, G.H., van Loan, C.F.: Matrix computations (1996)
Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Computation 13(7), 1443–1471 (2001)
Garate, C., Bilinsky, P., Bremond, F.: Crowd event recognition using hog tracker. In: Proc. PETS-Winter 2009, pp. 1–6 (2009)
Chan, A.B., Morrow, M., Vasconcelos, N.: Analysis of crowded scenes using holistic properties. In: Proc. PETS-Winter 2009, pp. 101–108 (2009)
Shi, Y., Gao, Y., Wang, R.: Real-time abnormal event detection in complicated scenes. In: Proc. ICPR 2010, pp. 3653–3656 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Lin, H., Deng, J.D., Woodford, B.J. (2013). Event Detection Using Quantized Binary Code and Spatial-Temporal Locality Preserving Projections. In: Cranefield, S., Nayak, A. (eds) AI 2013: Advances in Artificial Intelligence. AI 2013. Lecture Notes in Computer Science(), vol 8272. Springer, Cham. https://doi.org/10.1007/978-3-319-03680-9_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-03680-9_14
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-03679-3
Online ISBN: 978-3-319-03680-9
eBook Packages: Computer ScienceComputer Science (R0)