Nothing Special   »   [go: up one dir, main page]

Skip to main content

Detecting Community Structures in Networks Using a Linear-Programming Based Approach: a Review

  • Chapter
  • First Online:
Social Networks: A Framework of Computational Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 526))

Abstract

We give an account of an approach to community-structure detection in networks using linear programming: given a finite simple graph G, we assign penalties for manipulating this graph by either deleting or adding edges, and then consider the problem of turning G, by performing these two operations, at minimal total cost into a graph that represents a community structure, i.e., that is a disjoint union of complete subgraphs. We show that this minimization problem can be reformulated (and solved!) in terms of a one-parameter family of linear-programming problems relative to which some kind of a “second-order phase transition” can be observed, and we demonstrate by example that this interpretation provides a viable alternative for dealing with the much studied task of detecting community structures in networks. And by reporting our discussions with a leading ecologist, we demonstrate how our approach can be used to analyse food webs and to support the elucidation of their “global” implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    That is, the LP problem for which all requirements regarding the “integrality” of the solution vector have been dropped and only the requirement \( \chi_{T} (uv) \in [0,1] \) is kept.

References

  1. Albert, R., Jeong, H., Barabási, A.-L.: Diameter of the World-Wide Web. Nature 401, 130–131 (1999)

    Article  Google Scholar 

  2. Amaral, L.A.N., Scala, A., Barthélémy, M., Stanley, H.E.: Classes of samll-world networks. Proc. Natl. Acad. Sci. U.S.A. 97, 11149–11152 (2000)

    Article  Google Scholar 

  3. Bagrow, J.P., Bollt, E.M.: Local method for detecting communities. Phys. Rev. E 72, 046108 (2005)

    Article  Google Scholar 

  4. Baird, D., Ulanowicz, R.E.: The seasonal dynamics of the Chesapeake Bay ecosystem. Ecol. Monogr. 59, 329–364 (1989)

    Article  Google Scholar 

  5. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  6. Chen, W.Y.C., Dress, A.W.M., Yu,W.Q.: Community structures of networks. In: IET Systems Biology, Proceedings Mathematics Aspects of Computer and Information Sciences (MACIS 2006), Beijing, China, and Mathematics computer science vol. 1, pp. 441–457 (2008)

    Google Scholar 

  7. Chen, W.Y.C., Dress, A.W.M., Yu,W.Q.: Checking the reliability of a linear-programming based approach towards detecting community structures in networks, Proceedings International Conference on Computational Systems Biology (ICCSB 2006), Shanghai, China, and IET System Biology, vol. 5, pp. 286–291 (2007)

    Google Scholar 

  8. Clauset. A., Newman M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E. 69, 026113 (2004)

    Google Scholar 

  9. Clauset. A.: Finding local community structure in networks. Phys. Rev. E. 72, 026132 (2005)

    Google Scholar 

  10. Davidson, E., et al.: A genomic regulatory network for development. Science 295, 1669–1678 (2002)

    Article  Google Scholar 

  11. Flake, G.W., Lawrence, S.R., Giles, C.L., Coetzee, F.M.: Self-organization and identification of web communities. IEEE Comput. 35, 66–71 (2002)

    Article  Google Scholar 

  12. Fortunao, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010). doi:10.1016/j.physrep.2009.11.002

    Article  MathSciNet  Google Scholar 

  13. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grötschel, M., Wakabayashi, Y.: A cutting plane algorithm for a clustering problem. Math. Program. 45, 59–96 (1989)

    Article  MATH  Google Scholar 

  15. Grötschel, M., Wakabayashi, Y.: Facets of the clique partitioning polytope. Math. Program. 47, 367–387 (1990)

    Article  MATH  Google Scholar 

  16. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.-L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)

    Article  Google Scholar 

  17. Jeong, H., Mason, S.P., Barabási, A.-L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411, 41–42 (2001)

    Article  Google Scholar 

  18. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49, 291–307 (1970)

    Article  MATH  Google Scholar 

  19. Kleinberg, J., Lawrence, S.: The structure of the Web. Science 294, 1849–1850 (2001)

    Article  Google Scholar 

  20. Newman, M.E.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. U.S.A. 98, 404–409 (2001)

    Article  MATH  Google Scholar 

  21. Newman, M.E.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004)

    Article  Google Scholar 

  22. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

    Article  Google Scholar 

  23. Pocklington, A., Cumiskey, M., Armstrong, J., Grant, S.: The proteomes of neurotransmitter receptor complexes form modular networks with distributed functionality underlying plasticity and behaviour. Mol. Syst. Biol. (2006). doi: 10.1038/msb4100041

  24. Porter, M.A., Onnela, J.-P., Mucha, P.J.: Communities in networks. Not. Amer. Math. Soc. 56(9), 1082–1097, 1164–1166 (2009)

    Google Scholar 

  25. Pothen, A., Simon, H., Liou, K.-P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11, 430–452 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and idetifying communities in networks. Proc. Natl. Acad. Sci. U.S.A. 101, 2658–2663 (2004)

    Article  Google Scholar 

  27. Redner, S.: How popular is your paper? an empirical study of the citation distribution. Eur. Phys. J. B 4, 131–134 (1998)

    Article  Google Scholar 

  28. Reichardt, J., Bornholdt, S.: Detecting fuzzy community structures in complex networks with a potts model. Phys. Rev. Lett. 93, 218701 (2004)

    Article  Google Scholar 

  29. Scott, J.: Social Network Analysis: A Handbook., 2nd edn. Sage, London, (2000)

    Google Scholar 

  30. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  Google Scholar 

  31. Tyler, J.R., Wilkinson, D.M., Huberman, B.A.: Email as spectroscopy: automated discovery of community structure within organizations. In: Huysman, M., Wenger, E., Wulf. V. (eds.) Proceedings of the first international conference on communities and technologies, Kluwer, Dordrecht (2003)

    Google Scholar 

  32. Wasserman, S., Faust, K.: Social Network Analysis. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  33. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  34. Watts, D.J.: Small Worlds. Princeton University Press, Princeton (1999)

    Google Scholar 

  35. Williams, R.J., Martinez, N.D.: Simple rules yield complex food webs. Nature 404, 180–183 (2000)

    Article  Google Scholar 

  36. Wu, F., Huberman, B.A.: Finding communities in linear time: a physics approach. Eur. Phys. J. B 38, 331–338 (2004)

    Article  Google Scholar 

  37. Zachary, W.W.: An information flow model for conflict and fisson in small groups. J. Anthropol. Res. 33, 452–473 (1977)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to R.Ulanowicz and C. Bondavalli for their expert comments on our results and many helpful suggestions, and to M. Briesemann for his help on the data packing.

This work was financially supported by the Max Planck Society of Germany, the 973 Project on Mathematical Mechanization, the Ministry of Education, the Ministry of Science and Technology, and the National Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Dress .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, W.Y.C., Dress, A., Yu, W.Q. (2014). Detecting Community Structures in Networks Using a Linear-Programming Based Approach: a Review. In: Pedrycz, W., Chen, SM. (eds) Social Networks: A Framework of Computational Intelligence. Studies in Computational Intelligence, vol 526. Springer, Cham. https://doi.org/10.1007/978-3-319-02993-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02993-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02992-4

  • Online ISBN: 978-3-319-02993-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics