Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Interactive Rough Set Attribute Reduction Using Great Deluge Algorithm

  • Conference paper
Advances in Visual Informatics (IVIC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8237))

Included in the following conference series:

Abstract

Dimensionality reduction from an information system is a problem of eliminating unimportant attributes from the original set of attributes while avoiding loss of information in data mining process. In this process, a subset of attributes that is highly correlated with decision attributes is selected. In this paper, performance of the great deluge algorithm for rough set attribute reduction is investigated by comparing the method with other available approaches in the literature in terms of cardinality of obtained reducts (subsets), time required to obtain reducts, number of calculating dependency degree functions, number of rules generated by reducts, and the accuracy of the classification. An interactive interface is initially developed that user can easily select the parameters for reduction. This user interface is developed toward visual data mining.The carried out model has been tested on the standard datasets available in the UCI machine learning repository. Experimental results show the effectiveness of the method especially with relation to the time and accuracy of the classification using generated rules. The method outperformed other approaches in M-of-N, Exactly, and LED datasets with achieving 100% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufman Publishers, Oxford (2006)

    Google Scholar 

  2. Keim, D.A.: Visual exploration of large data sets. Commun. ACM 44, 38–44 (2001)

    Article  Google Scholar 

  3. Havre, S., Hetzler, E., Whitney, P., Nowell, L.: ThemeRiver: visualizing thematic changes in large document collections. IEEE Transactions on Visualization and Computer Graphics 8, 9–20 (2002)

    Article  Google Scholar 

  4. Stolte, C., Tang, D., Hanrahan, P.: Polaris: A System for Query, Analysis, and Visualization of Multidimensional Relational Databases. IEEE Transactions on Visualization and Computer Graphics 8, 52–65 (2002)

    Article  Google Scholar 

  5. Abello, J., Korn, J.: MGV: a system for visualizing massive multidigraphs. IEEE Transactions on Visualization and Computer Graphics 8, 21–38 (2002)

    Article  Google Scholar 

  6. Zhen, L., Xiangshi, R., Chaohai, Z.: User interface design of interactive data mining in parallel environment. In: Proceedings of the 2005 International Conference on Active Media Technology, AMT 2005, pp. 359–363 (2005)

    Google Scholar 

  7. Dash, M., Liu, H.: Consistency-based search in feature selection. Artificial Intelligence 151, 155–176 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lihe, G.: A New Algorithm for Attribute Reduction Based on Discernibility Matrix. In: Cao, B.-Y. (ed.) Fuzzy Information and Engineering. ASC, vol. 40, pp. 373–381. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Kudo, Y., Murai, T.: A Heuristic Algorithm for Attribute Reduction Based on Discernibility and Equivalence by Attributes. In: Torra, V., Narukawa, Y., Inuiguchi, M. (eds.) MDAI 2009. LNCS, vol. 5861, pp. 351–359. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Li, H., Zhang, W., Xu, P., Wang, H.: Rough Set Attribute Reduction in Decision Systems. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 135–140. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Liu, H., Li, J., Wong, L.: A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns. In: Lathrop, R., Nakai, K., Miyano, S., Takagi, T., Kanehisa, M. (eds.) Genome Informatics 2002, vol. 13, pp. 51–60. Universal Academy Press, Tokyo (2002)

    Google Scholar 

  12. Hu, Q.-H., Li, X., Yu, D.-R.: Analysis on Classification Performance of Rough Set Based Reducts. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS (LNAI), vol. 4099, pp. 423–433. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jensen, R., Qiang, S.: Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches. IEEE Transactions on Knowledge and Data Engineering 16, 1457–1471 (2004)

    Article  Google Scholar 

  15. Hedar, A.-R., Wang, J., Fukushima, M.: Tabu search for attribute reduction in rough set theory. Soft. Comput. 12, 909–918 (2008)

    Article  MATH  Google Scholar 

  16. Jue, W., Hedar, A.R., Guihuan, Z., Shouyang, W.: Scatter Search for Rough Set Attribute Reduction. In: International Joint Conference on Computational Sciences and Optimization, CSO 2009, pp. 531–535 (2009)

    Google Scholar 

  17. Jensen, R., Shen, Q.: Finding Rough Set Reducts with Ant Colony Optimization. In: Workshop, U.K. (ed.) UK Workshop on Computational Intelligence, UK (2003)

    Google Scholar 

  18. Ke, L., Feng, Z., Ren, Z.: An efficient ant colony optimization approach to attribute reduction in rough set theory. Pattern Recogn. Lett. 29, 1351–1357 (2008)

    Article  Google Scholar 

  19. Abdullah, S., Jaddi, N.S.: Great Deluge Algorithm for Rough Set Attribute Reduction. In: Zhang, Y., Cuzzocrea, A., Ma, J., Chung, K.-i., Arslan, T., Song, X. (eds.) DTA/BSBT 2010. CCIS, vol. 118, pp. 189–197. Springer, Heidelberg (2010)

    Google Scholar 

  20. Jaddi, N.S., Abdullah, S.: Nonlinear Great Deluge Algorithm for Rough Set Attribute Reduction. Journal of Information Science & Engineering 29, 49–62 (2013)

    Google Scholar 

  21. Mafarja, M., Abdullah, S.: Modified great deluge for attribute reduction in rough set theory. In: 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 1464–1469 (2011)

    Google Scholar 

  22. Gunter, D.: New optimization heuristics (The Great Deluge Algorithm and Record to Record Travel). Computational Physic, 86–92 (1993)

    Google Scholar 

  23. Burke, E.K., Abdullah, S.: A Multi-start Large Neighbourhood Search Approach with Local Search Methods for Examination Timetabling. In: Long, D., Smith, S., Borrajo, D., McCluskey, L. (eds.) Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS 2006), Cumbria, UK (2006)

    Google Scholar 

  24. Burke, E., Bykov, Y., Newall, J., Petrovic, S.: A time-predefined local search approach to exam timetabling problems. IIE Transactions 36, 509–528 (2004)

    Article  Google Scholar 

  25. Landa-Silva, D., Obit, J.H.: Evolutionary Non-linear Great Deluge for University Course Timetabling. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS, vol. 5572, pp. 269–276. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  26. McMullan, P.: An Extended Implementation of the Great Deluge Algorithm for Course Timetabling. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007, Part I. LNCS, vol. 4487, pp. 538–545. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  27. Migut, M., Worring, M.: Visual exploration of classification models for various data types in risk assessment. Information Visualization (2012)

    Google Scholar 

  28. Stahl, F., Gabrys, B., Gaber, M.M., Berendsen, M.: An overview of interactive visual data mining techniques for knowledge discovery. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 3, 239–256 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Jaddi, N.S., Abdullah, S. (2013). An Interactive Rough Set Attribute Reduction Using Great Deluge Algorithm. In: Zaman, H.B., Robinson, P., Olivier, P., Shih, T.K., Velastin, S. (eds) Advances in Visual Informatics. IVIC 2013. Lecture Notes in Computer Science, vol 8237. Springer, Cham. https://doi.org/10.1007/978-3-319-02958-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02958-0_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02957-3

  • Online ISBN: 978-3-319-02958-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics