Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 247))

Abstract

Incomplete data are questions without answers or variables without observations. Even a small percentage of missing data can cause serious problems with the analysis leading to draw wrong conclusions and imperfect knowledge. There are many techniques to overcome the imperfect knowledge and manage data with incomplete items, but no one is absolutely better than the others.

To handle such problems, researchers are trying to solve it in different directions and then proposed to handle the information system. The attribute values are important for information processing. In the field of databases, various efforts have been made for the improvement and enhance of database query process to handle the data. The different researchers have tried and are trying to handle the imprecise and/or uncertainty in databases. The methodology followed by different approaches like: Fuzzy sets, Rough sets, Boolean Logic, Possibility Theory, Statistically Similarity etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  2. Grzymala-Busse, J.W.: Three Approaches to Missing Attribute Values- A Rough Set Approach. In: Workshop on Foundations of Data Mining, Associated with 4th IEEE International Conference on Data Mining, Brighton, UK (2004)

    Google Scholar 

  3. Grzymała-Busse, J.W., Hu, M.: A Comparison of Several Approaches to Missing Attribute Values in Data Mining. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 378–385. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Grzymała-Busse, J.W.: Incomplete Data and Generalization of Indiscernibility Relation, Definability, and Approximations. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 244–253. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Grzymala-Busse, J.W., Goodwin, L.K.: Coping with Missing Attribute Values Based on Closest Fit in Preterm Birth Data: A Rough Set Approach. Computation Intelligence 17(3), 425–434 (2001)

    Article  Google Scholar 

  6. Grzymala-Busse, J.W., Wang, A.Y.: Modified algorithms LEM1 and LEM2 for rule induction from data with missing attribute values. In: Proc. of the Fifth International Workshop on Rough Sets and Soft Computing (RSSC 1997) at the Third Joint Conference on Information Sciences (JCIS 1997), Research Triangle Park, NC, March 2-5, pp. 69–72 (1997)

    Google Scholar 

  7. Kerdprasop, N., Saiveaw, K.Y., Pumrungreong, P.: A comparative study of techniques to handle missing values in the classification task of data mining. In: 29th Congress on Science and Technology of Thailand, Khon Kaen University, Thailand (2003)

    Google Scholar 

  8. Kryszkiewicz, M.: Rough set approach to incomplete information systems. In: Proceedings of the Second Annual Joint Conference on Information Sciences, Wrightsville Beach, NC, September 28-October 1, pp. 194–197 (1995)

    Google Scholar 

  9. Little, R.J., Rubin, D.B.: Statistical Analysis with Missing Data (2002)

    Google Scholar 

  10. Kantadzic, M.: Data Mining: Concepts, Models, Methods & Algorithms. John Wiley & Sons, NY (2003)

    Google Scholar 

  11. Nakata, M., Sakai, H.: Rough sets handling missing values probabilistically interpreted. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 325–334. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Quinlan, J.R.: Unknown attribute values in induction. In: Proc. Sixth Intl. Workshop on Machine Learning, pp. 164–168 (1989)

    Google Scholar 

  13. Slowinski, R., Stefanowski, J.: Rough classification in incomplete information systems. Mathematical and Computer Modelling 12(10-11), 1347–1357 (1989)

    Article  Google Scholar 

  14. Stefanowski, J., Tsoukiàs, A.: On the extension of rough sets under incomplete information. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 73–82. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  15. Stefanowski, J., Tsoukiàs, A.: Incomplete information tables and rough classification. Computational Intelligence 17(3), 545–566 (2001)

    Article  Google Scholar 

  16. Wu, C.-H., Wun, C.-H., Chou, H.-J.: Using association rules for completing missing data. In: HIS, pp. 236–241. IEEE Computer Society (2004)

    Google Scholar 

  17. Lavrajc, N., Keravnou, E., Zupan, B.: Intelligent Data Analysis in Medicine and Pharmacology. Kluwer Academic Publishers (1997)

    Google Scholar 

  18. Cheesemen, P., Stutz, J.: Bayesian classification (AutoClass): theory and results. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthunsamy, R. (eds.) Advances in Knowledge Discovery and Data Mining. AAAI Press/MIT Press (1996)

    Google Scholar 

  19. Maytal, S.-T., Provost, F.: Handling Missing Values when Applying Classification Models. Journal of Machine Learning Research 8, 1625–1657 (2007)

    Google Scholar 

  20. Ding, Y., Simonoff, J.: An investigation of missing data methods for classification trees. Working paper 2006-SOR-3, Stern School of Business, New York University (2006)

    Google Scholar 

  21. Rady, E.A., Abd El-Monsef, M.M.E., Abd El-Latif, W.A.: A Modified Rough Set Approach to Incomplete Information Systems. Research Article Received (October 30, 2006) (revised January 27, 2007) (accepted March 27, 2007)

    Google Scholar 

  22. Fujikawa, Y., Ho, T.-B.: Cluster-Based Algorithms for Dealing with Missing Values. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, pp. 549–554. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  23. Greco, S., Matarazzo, B., Slowinski, R.: Rough set processing of vague information using fuzzy similarity relations. In: Calude, C.S., Paun, G. (eds.) Finite Versus Infinite: Contributions to an Eternal Dilemma. Discrete Mathematics and Theoretical Computer Science (London), pp. 149–173. Springer, London (2000)

    Chapter  Google Scholar 

  24. Kryszkiewicz, M.: Rough set approach to incomplete information systems. Information Sciences 112, 39–49 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kryszkiewicz, M.: Rules in Incomplete Information Systems. Information Sciences 113(3-4), 271–292 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Gantayat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gantayat, S.S., Misra, A., Panda, B.S. (2014). A Study of Incomplete Data – A Review. In: Satapathy, S., Udgata, S., Biswal, B. (eds) Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2013. Advances in Intelligent Systems and Computing, vol 247. Springer, Cham. https://doi.org/10.1007/978-3-319-02931-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02931-3_45

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02930-6

  • Online ISBN: 978-3-319-02931-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics