Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Perception-Based Interpretation of the Kernel-Based Object Tracking

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8192))

Abstract

This paper investigates the advantages of using simple rules of human perception in object tracking. Specifically, human visual perception (HVP) will be used in the definition of both target features and the similarity metric to be used for detecting the target in subsequent frames. Luminance and contrast will play a crucial role in the definition of target features, whereas recent advances in the relations between some classical concepts of information theory and the way human eye codes image information will be used in the definition of the similarity metric. The use of HVP rules in a well known object tracking algorithm, allows us to increase its efficacy in following the target and to considerably reduce the computational cost of the whole tracking process. Some tests also show the stability and the robustness of a perception-based object tracking algorithm also in the presence of other moving elements or target occlusion for few subsequent frames.

The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-02895-8_64

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Computing Surveys 38(4) (December 2006)

    Google Scholar 

  2. Yang, H., Shao, L., Zheng, F., Wang, L., Song, Z.: Recent advances and trends in visual tracking: A review. Neurocomputing 74, 3823–3831 (2011)

    Article  Google Scholar 

  3. Wu, Y., Lim, J., Yang, M.H.: Online Object Tracking: A Benchmark. In: Proc. of CVPR 2013 (2013)

    Google Scholar 

  4. Bruni, V., Vitulano, D., Wang, Z.: Special issue on human vision and information theory. Signal, Image and Video Processing 7(3), 389–390 (2013)

    Article  Google Scholar 

  5. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. on Image Processing 15(2), 430–444 (2006)

    Article  Google Scholar 

  6. Nikvand, N., Wang, Z.: Image Distortion Analysis Based on Normalized Perceptual Information Distance. In: Wang, Z., Bruni, V., Vitulano, D. (eds.) Signal Image and Video Processing, Special Issue on Human Vision and Information Theory, vol. 7(3), pp. 403–410 (May 2013)

    Google Scholar 

  7. Bruni, V., Rossi, E., Vitulano, D.: Jensen-Shannon divergence for visual quality assessment. In: Wang, Z., Bruni, V., Vitulano, D. (eds.) Signal Image and Video Processing, Special Issue on Human Vision and Information Theory, vol. 7(3), pp. 411–421 (May 2013)

    Google Scholar 

  8. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. on Pattern Analysis and Machine Inteligence 25(2), 564–577 (2003)

    Article  Google Scholar 

  9. Shen, L., Huang, X., Yan, Y., Bai, S.: An improved mean-shift tracking algorithm with spatial-color feature and new similarity measure. In: Proc. of Int. Conf. on Multimedia Tech., ICMT (2011)

    Google Scholar 

  10. Hu, J., Juan, C., Wang, J.: A spatial-color mean-shift object tracking algorithm with scale and orientation estimation. Pattern Recognition Letters 29(16), 2165–2173 (2008)

    Article  Google Scholar 

  11. He, S., Yang, Q., Lau, R.W.H., Wang, J., Yang, M.H.: Visual Tracking via Locality Sensitive Histograms. In: Proc. of CVPR 2013 (2013)

    Google Scholar 

  12. Siagian, C., Itti, L.: Rapid Biologically-Inspired Scene Classification Using Features Shared with Visual Attention. IEEE Trans. on Pattern Analysis and Machine Inteligence 25(4), 861–873 (2009)

    Google Scholar 

  13. Dodge, S.F., Karam, L.J.: Attentive Gesture Recognition. In: Proc. of ICIP 2012 (2012)

    Google Scholar 

  14. Frazor, R., Geisler, W.: Local luminance and contrast in natural images. Vision Research 46, 1585–1598 (2006)

    Article  Google Scholar 

  15. Raj, R., Geisler, W.S., Frazor, R.A., Bovik, A.C.: Contrast statistics for foveated visual systems: fixation selection by minimizing contrast entropy. J. of Optical Soc. Am. A 22(10) (October 2005)

    Google Scholar 

  16. Bruni, V., Rossi, E., Vitulano, D.: On the Equivalence Between Jensen-Shannon Divergence and Michelson Contrast. IEEE Trans. on Information Theory 58(7), 4278–4288 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ijiri, Y., Lao, S., Han, T.X., Murase, H.: Human re-identification through distance metric learning based on Jensen-Shannon kernel. In: Proc. of VISAPP, pp. 603–612. SciTePress (February 2012)

    Google Scholar 

  18. Arnow, T., Bovik, A.: Foveated visual search for corners. IEEE Trans. Image Processing 16(3), 813–823 (2007)

    Article  MathSciNet  Google Scholar 

  19. Bruni, V., Ramponi, G., Vitulano, D.: Image Quality Assessment through a Subset of the Image Data. In: Proc. of IEEE ISPA 2011 (2011)

    Google Scholar 

  20. Simoncelli, E., Olshausen, B.: Natural image statistics and neural representation. Ann. Rev. Neuro. 24, 1193–1216 (2011)

    Article  Google Scholar 

  21. Wang, Z., Lu, L., Bovik, A.C.: Foveation Scalable Video Coding with Automatic Fixation Selection. IEEE Trans. on Image Processing 12(2) (February 2003)

    Google Scholar 

  22. Bruni, V., Rossi, E., Vitulano, D.: Perceptual object tracking. In: IEEE Workshop BIOMS (September 2012)

    Google Scholar 

  23. Winkler, S.: Digital Video Quality-Vision Models and Metrics. J. Wiley and Sons (2005)

    Google Scholar 

  24. Li, M., Chen, X., Li, X., Ma, B., Vitanyi, P.: The similarity metric. IEEE Trans. on Information Theory 50(12), 3250–3264 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cover, T., Thomas, J.: Elements of information Theory. Wiley (1991)

    Google Scholar 

  26. Cilibrasi, R., Vitanyi, P.M.B.: Clustering by compression. IEEE Trans. on Information Theory 51(4), 1523–1545 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cover, T., Gacs, P., Gray, M.: Kolmogorov’s contributions to information theory and algorithmic complexity. Ann. Probab. 17, 840–865 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bruni, V., Vitulano, D. (2013). A Perception-Based Interpretation of the Kernel-Based Object Tracking. In: Blanc-Talon, J., Kasinski, A., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2013. Lecture Notes in Computer Science, vol 8192. Springer, Cham. https://doi.org/10.1007/978-3-319-02895-8_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02895-8_54

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02894-1

  • Online ISBN: 978-3-319-02895-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics