Abstract
This paper investigates the advantages of using simple rules of human perception in object tracking. Specifically, human visual perception (HVP) will be used in the definition of both target features and the similarity metric to be used for detecting the target in subsequent frames. Luminance and contrast will play a crucial role in the definition of target features, whereas recent advances in the relations between some classical concepts of information theory and the way human eye codes image information will be used in the definition of the similarity metric. The use of HVP rules in a well known object tracking algorithm, allows us to increase its efficacy in following the target and to considerably reduce the computational cost of the whole tracking process. Some tests also show the stability and the robustness of a perception-based object tracking algorithm also in the presence of other moving elements or target occlusion for few subsequent frames.
The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-02895-8_64
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Computing Surveys 38(4) (December 2006)
Yang, H., Shao, L., Zheng, F., Wang, L., Song, Z.: Recent advances and trends in visual tracking: A review. Neurocomputing 74, 3823–3831 (2011)
Wu, Y., Lim, J., Yang, M.H.: Online Object Tracking: A Benchmark. In: Proc. of CVPR 2013 (2013)
Bruni, V., Vitulano, D., Wang, Z.: Special issue on human vision and information theory. Signal, Image and Video Processing 7(3), 389–390 (2013)
Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. on Image Processing 15(2), 430–444 (2006)
Nikvand, N., Wang, Z.: Image Distortion Analysis Based on Normalized Perceptual Information Distance. In: Wang, Z., Bruni, V., Vitulano, D. (eds.) Signal Image and Video Processing, Special Issue on Human Vision and Information Theory, vol. 7(3), pp. 403–410 (May 2013)
Bruni, V., Rossi, E., Vitulano, D.: Jensen-Shannon divergence for visual quality assessment. In: Wang, Z., Bruni, V., Vitulano, D. (eds.) Signal Image and Video Processing, Special Issue on Human Vision and Information Theory, vol. 7(3), pp. 411–421 (May 2013)
Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. on Pattern Analysis and Machine Inteligence 25(2), 564–577 (2003)
Shen, L., Huang, X., Yan, Y., Bai, S.: An improved mean-shift tracking algorithm with spatial-color feature and new similarity measure. In: Proc. of Int. Conf. on Multimedia Tech., ICMT (2011)
Hu, J., Juan, C., Wang, J.: A spatial-color mean-shift object tracking algorithm with scale and orientation estimation. Pattern Recognition Letters 29(16), 2165–2173 (2008)
He, S., Yang, Q., Lau, R.W.H., Wang, J., Yang, M.H.: Visual Tracking via Locality Sensitive Histograms. In: Proc. of CVPR 2013 (2013)
Siagian, C., Itti, L.: Rapid Biologically-Inspired Scene Classification Using Features Shared with Visual Attention. IEEE Trans. on Pattern Analysis and Machine Inteligence 25(4), 861–873 (2009)
Dodge, S.F., Karam, L.J.: Attentive Gesture Recognition. In: Proc. of ICIP 2012 (2012)
Frazor, R., Geisler, W.: Local luminance and contrast in natural images. Vision Research 46, 1585–1598 (2006)
Raj, R., Geisler, W.S., Frazor, R.A., Bovik, A.C.: Contrast statistics for foveated visual systems: fixation selection by minimizing contrast entropy. J. of Optical Soc. Am. A 22(10) (October 2005)
Bruni, V., Rossi, E., Vitulano, D.: On the Equivalence Between Jensen-Shannon Divergence and Michelson Contrast. IEEE Trans. on Information Theory 58(7), 4278–4288 (2012)
Ijiri, Y., Lao, S., Han, T.X., Murase, H.: Human re-identification through distance metric learning based on Jensen-Shannon kernel. In: Proc. of VISAPP, pp. 603–612. SciTePress (February 2012)
Arnow, T., Bovik, A.: Foveated visual search for corners. IEEE Trans. Image Processing 16(3), 813–823 (2007)
Bruni, V., Ramponi, G., Vitulano, D.: Image Quality Assessment through a Subset of the Image Data. In: Proc. of IEEE ISPA 2011 (2011)
Simoncelli, E., Olshausen, B.: Natural image statistics and neural representation. Ann. Rev. Neuro. 24, 1193–1216 (2011)
Wang, Z., Lu, L., Bovik, A.C.: Foveation Scalable Video Coding with Automatic Fixation Selection. IEEE Trans. on Image Processing 12(2) (February 2003)
Bruni, V., Rossi, E., Vitulano, D.: Perceptual object tracking. In: IEEE Workshop BIOMS (September 2012)
Winkler, S.: Digital Video Quality-Vision Models and Metrics. J. Wiley and Sons (2005)
Li, M., Chen, X., Li, X., Ma, B., Vitanyi, P.: The similarity metric. IEEE Trans. on Information Theory 50(12), 3250–3264 (2004)
Cover, T., Thomas, J.: Elements of information Theory. Wiley (1991)
Cilibrasi, R., Vitanyi, P.M.B.: Clustering by compression. IEEE Trans. on Information Theory 51(4), 1523–1545 (2005)
Cover, T., Gacs, P., Gray, M.: Kolmogorov’s contributions to information theory and algorithmic complexity. Ann. Probab. 17, 840–865 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bruni, V., Vitulano, D. (2013). A Perception-Based Interpretation of the Kernel-Based Object Tracking. In: Blanc-Talon, J., Kasinski, A., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2013. Lecture Notes in Computer Science, vol 8192. Springer, Cham. https://doi.org/10.1007/978-3-319-02895-8_54
Download citation
DOI: https://doi.org/10.1007/978-3-319-02895-8_54
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02894-1
Online ISBN: 978-3-319-02895-8
eBook Packages: Computer ScienceComputer Science (R0)