Nothing Special   »   [go: up one dir, main page]

Skip to main content

How to Design a Network of Comparators

  • Conference paper
Brain and Health Informatics (BHI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8211))

Included in the following conference series:

Abstract

We discuss the networks of comparators designed for the task of compound object identification. We show how to process input objects by means of their ontology-based attribute representations through the layers of hierarchical structure in order to assembly the degrees of their resemblance to objects in the reference set. We present some examples illustrating how to use the networks of comparators in the areas of image recognition and text processing. We also investigate the ability of the networks of comparators to scale with respect to various aspects of complexity of considered compound object identification problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., Huang, F.J.: A Tutorial on Energy-based Learning. In: Predicting Structured Data. Neural Information Processing Systems. MIT Press (2007)

    Google Scholar 

  2. Lingras, P.: Fuzzy-Rough and Rough-Fuzzy Serial Combinations in Neurocomputing. Neurocomputing 36(1-4), 29–44 (2001)

    Article  MATH  Google Scholar 

  3. Bengio, Y.: Learning Deep Architectures for AI. Foundations and Trends in Machine Learning 2(1), 1–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Nguyen, S.H., Nguyen, T.T., Szczuka, M., Nguyen, H.S.: An Approach to Pattern Recognition based on Hierarchical Granular Computing. Fundamenta Informaticae 127(1-4), 369–384 (2013)

    Google Scholar 

  5. Sosnowski, Ł., Ślęzak, D.: Comparators for Compound Object Identification. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS, vol. 6743, pp. 342–349. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Sosnowski, Ł., Ślęzak, D.: Networks of Compound Object Comparators. In: Proc. of FUZZ-IEEE 2013 (2013)

    Google Scholar 

  7. Ślęzak, D., Sosnowski, Ł.: SQL-based Compound Object Comparators: A Case Study of Images Stored in ICE. In: Kim, T.-H., Kim, H.-K., Khan, M.K., Kiumi, A., Fang, W.-C., Ślęzak, D. (eds.) ASEA 2010. CCIS, vol. 117, pp. 303–316. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Bazan, J.G., Buregwa-Czuma, S., Jankowski, A.: A Domain Knowledge as a Tool for Improving Classifiers. Fundamenta Informaticae 127(1-4), 495–511 (2013)

    Google Scholar 

  9. Świniarski, R.W., Skowron, A.: Rough Set Methods in Feature Selection and Recognition. Pattern Recognition Letters 24(6), 833–849 (2003)

    Article  MATH  Google Scholar 

  10. Verbiest, N., Cornelis, C., Herrera, F.: FRPS: A Fuzzy Rough Prototype Selection Method. Pattern Recognition 46(10), 2770–2782 (2013)

    Article  Google Scholar 

  11. Pawlak, Z., Skowron, A.: Rough Sets: Some Extensions. Information Sciences 177(1), 28–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Janusz, A., Ślęzak, D., Nguyen, H.S.: Unsupervised Similarity Learning from Textual Data. Fundamenta Informaticae 119(3-4), 319–336 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Marin, N., Medina, J.M., Pons, O., Sanchez, D., Vila, M.A.: Complex Object Comparison in a Fuzzy Context. Information and Software Technology 45, 431–444 (2003)

    Article  Google Scholar 

  14. Polkowski, L., Skowron, A.: Rough Mereological Calculi of Granules: A Rough Set Approach to Computation. Computational Intelligence 17(3), 472–492 (2001)

    Article  MathSciNet  Google Scholar 

  15. Kowalski, M., Ślęzak, D., Toppin, G., Wojna, A.: Injecting Domain Knowledge into RDBMS – Compression of Alphanumeric Data Attributes. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS, vol. 6804, pp. 386–395. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Ślęzak, D., Stencel, K., Nguyen, H.S.: (No)SQL Platform for Scalable Semantic Processing of Fast Growing Document Repositories. ERCIM News 90 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Sosnowski, Ł., Ślęzak, D. (2013). How to Design a Network of Comparators. In: Imamura, K., Usui, S., Shirao, T., Kasamatsu, T., Schwabe, L., Zhong, N. (eds) Brain and Health Informatics. BHI 2013. Lecture Notes in Computer Science(), vol 8211. Springer, Cham. https://doi.org/10.1007/978-3-319-02753-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02753-1_39

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02752-4

  • Online ISBN: 978-3-319-02753-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics