Abstract
We discuss the networks of comparators designed for the task of compound object identification. We show how to process input objects by means of their ontology-based attribute representations through the layers of hierarchical structure in order to assembly the degrees of their resemblance to objects in the reference set. We present some examples illustrating how to use the networks of comparators in the areas of image recognition and text processing. We also investigate the ability of the networks of comparators to scale with respect to various aspects of complexity of considered compound object identification problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., Huang, F.J.: A Tutorial on Energy-based Learning. In: Predicting Structured Data. Neural Information Processing Systems. MIT Press (2007)
Lingras, P.: Fuzzy-Rough and Rough-Fuzzy Serial Combinations in Neurocomputing. Neurocomputing 36(1-4), 29–44 (2001)
Bengio, Y.: Learning Deep Architectures for AI. Foundations and Trends in Machine Learning 2(1), 1–127 (2009)
Nguyen, S.H., Nguyen, T.T., Szczuka, M., Nguyen, H.S.: An Approach to Pattern Recognition based on Hierarchical Granular Computing. Fundamenta Informaticae 127(1-4), 369–384 (2013)
Sosnowski, Ł., Ślęzak, D.: Comparators for Compound Object Identification. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS, vol. 6743, pp. 342–349. Springer, Heidelberg (2011)
Sosnowski, Ł., Ślęzak, D.: Networks of Compound Object Comparators. In: Proc. of FUZZ-IEEE 2013 (2013)
Ślęzak, D., Sosnowski, Ł.: SQL-based Compound Object Comparators: A Case Study of Images Stored in ICE. In: Kim, T.-H., Kim, H.-K., Khan, M.K., Kiumi, A., Fang, W.-C., Ślęzak, D. (eds.) ASEA 2010. CCIS, vol. 117, pp. 303–316. Springer, Heidelberg (2010)
Bazan, J.G., Buregwa-Czuma, S., Jankowski, A.: A Domain Knowledge as a Tool for Improving Classifiers. Fundamenta Informaticae 127(1-4), 495–511 (2013)
Świniarski, R.W., Skowron, A.: Rough Set Methods in Feature Selection and Recognition. Pattern Recognition Letters 24(6), 833–849 (2003)
Verbiest, N., Cornelis, C., Herrera, F.: FRPS: A Fuzzy Rough Prototype Selection Method. Pattern Recognition 46(10), 2770–2782 (2013)
Pawlak, Z., Skowron, A.: Rough Sets: Some Extensions. Information Sciences 177(1), 28–40 (2007)
Janusz, A., Ślęzak, D., Nguyen, H.S.: Unsupervised Similarity Learning from Textual Data. Fundamenta Informaticae 119(3-4), 319–336 (2012)
Marin, N., Medina, J.M., Pons, O., Sanchez, D., Vila, M.A.: Complex Object Comparison in a Fuzzy Context. Information and Software Technology 45, 431–444 (2003)
Polkowski, L., Skowron, A.: Rough Mereological Calculi of Granules: A Rough Set Approach to Computation. Computational Intelligence 17(3), 472–492 (2001)
Kowalski, M., Ślęzak, D., Toppin, G., Wojna, A.: Injecting Domain Knowledge into RDBMS – Compression of Alphanumeric Data Attributes. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS, vol. 6804, pp. 386–395. Springer, Heidelberg (2011)
Ślęzak, D., Stencel, K., Nguyen, H.S.: (No)SQL Platform for Scalable Semantic Processing of Fast Growing Document Repositories. ERCIM News 90 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Sosnowski, Ł., Ślęzak, D. (2013). How to Design a Network of Comparators. In: Imamura, K., Usui, S., Shirao, T., Kasamatsu, T., Schwabe, L., Zhong, N. (eds) Brain and Health Informatics. BHI 2013. Lecture Notes in Computer Science(), vol 8211. Springer, Cham. https://doi.org/10.1007/978-3-319-02753-1_39
Download citation
DOI: https://doi.org/10.1007/978-3-319-02753-1_39
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02752-4
Online ISBN: 978-3-319-02753-1
eBook Packages: Computer ScienceComputer Science (R0)