Abstract
We introduce a general algebraic setting for describing linear boundary problems in a symbolic computation context, with emphasis on the case of partial differential equations. The general setting is then applied to the Cauchy problem for completely reducible partial differential equations with constant coefficients. While we concentrate on the theoretical features in this paper, the underlying operator ring is implemented and provides a sufficient basis for all methods presented here.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hansen, S.: On the “fundamental principle” of L. Ehrenpreis. In: Partial Differential Equations (Warsaw, 1978). Banach Center Publ., vol. 10, pp. 185–201. PWN, Warsaw (1983)
Hörmander, L.: Linear partial differential operators. Springer, Berlin (1976)
John, F.: Partial differential equations, 4th edn. Applied Mathematical Sciences, vol. 1. Springer, New York (1982)
Knapp, A.W.: Advanced real analysis. Cornerstones. Birkhäuser Boston Inc., Boston (2005)
Korporal, A.: Symbolic Methods for Generalized Green’s Operators and Boundary Problems. PhD thesis, Johannes Kepler University, Linz, Austria (November 2012); Abstracted in ACM Communications in Computer Algebra 46(4(182)) (December 2012)
Korporal, A., Regensburger, G., Rosenkranz, M.: Regular and singular boundary problems in MAPLE. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 280–293. Springer, Heidelberg (2011)
Korporal, A., Regensburger, G., Rosenkranz, M.: Symbolic computation for ordinary boundary problems in maple. In: Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, ISSAC 2012 (2012) (software presentation)
Oberst, U., Pauer, F.: The constructive solution of linear systems of partial difference and differential equations with constant coefficients. Multidimens. Systems Signal Process. 12(3-4), 253–308 (2001); Special issue: Applications of Gröbner bases to multidimensional systems and signal processing
Regensburger, G., Rosenkranz, M.: An algebraic foundation for factoring linear boundary problems. Ann. Mat. Pura Appl (4) 188(1), 123–151 (2009), doi:10.1007/s10231-008-0068-3
Renardy, M., Rogers, R.C.: An introduction to partial differential equations, 2nd edn. Texts in Applied Mathematics, vol. 13. Springer, New York (2004)
Rosenkranz, M.: A new symbolic method for solving linear two-point boundary value problems on the level of operators. J. Symbolic Comput. 39(2), 171–199 (2005)
Rosenkranz, M.: Functorial programming & integro-differential operators. In: Talk at the International Mathematica Symposium (IMS 2012), London, United Kingdom, June 13 (2012), http://www.homepages.ucl.ac.uk/ ucahwts/ims2012/ims2012announce1/IMS2012.html
Rosenkranz, M., Regensburger, G.: Solving and factoring boundary problems for linear ordinary differential equations in differential algebras. Journal of Symbolic Computation 43(8), 515–544 (2008)
Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: A symbolic framework for operations on linear boundary problems. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 269–283. Springer, Heidelberg (2009)
Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: Symbolic analysis of boundary problems: From rewriting to parametrized Gröbner bases. In: Langer, U., Paule, P. (eds.) Numerical and Symbolic Scientific Computing: Progress and Prospects, pp. 273–331. Springer (2012)
Stakgold, I.: Green’s functions and boundary value problems. John Wiley & Sons, New York (1979)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Rosenkranz, M., Phisanbut, N. (2013). A Symbolic Approach to Boundary Problems for Linear Partial Differential Equations. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2013. Lecture Notes in Computer Science, vol 8136. Springer, Cham. https://doi.org/10.1007/978-3-319-02297-0_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-02297-0_25
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02296-3
Online ISBN: 978-3-319-02297-0
eBook Packages: Computer ScienceComputer Science (R0)