Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Symbolic Approach to Boundary Problems for Linear Partial Differential Equations

Applications to the Completely Reducible Case of the Cauchy Problem with Constant Coefficients

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8136))

Included in the following conference series:

Abstract

We introduce a general algebraic setting for describing linear boundary problems in a symbolic computation context, with emphasis on the case of partial differential equations. The general setting is then applied to the Cauchy problem for completely reducible partial differential equations with constant coefficients. While we concentrate on the theoretical features in this paper, the underlying operator ring is implemented and provides a sufficient basis for all methods presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hansen, S.: On the “fundamental principle” of L. Ehrenpreis. In: Partial Differential Equations (Warsaw, 1978). Banach Center Publ., vol. 10, pp. 185–201. PWN, Warsaw (1983)

    Google Scholar 

  2. Hörmander, L.: Linear partial differential operators. Springer, Berlin (1976)

    MATH  Google Scholar 

  3. John, F.: Partial differential equations, 4th edn. Applied Mathematical Sciences, vol. 1. Springer, New York (1982)

    Google Scholar 

  4. Knapp, A.W.: Advanced real analysis. Cornerstones. Birkhäuser Boston Inc., Boston (2005)

    Google Scholar 

  5. Korporal, A.: Symbolic Methods for Generalized Green’s Operators and Boundary Problems. PhD thesis, Johannes Kepler University, Linz, Austria (November 2012); Abstracted in ACM Communications in Computer Algebra 46(4(182)) (December 2012)

    Google Scholar 

  6. Korporal, A., Regensburger, G., Rosenkranz, M.: Regular and singular boundary problems in MAPLE. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 280–293. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Korporal, A., Regensburger, G., Rosenkranz, M.: Symbolic computation for ordinary boundary problems in maple. In: Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, ISSAC 2012 (2012) (software presentation)

    Google Scholar 

  8. Oberst, U., Pauer, F.: The constructive solution of linear systems of partial difference and differential equations with constant coefficients. Multidimens. Systems Signal Process. 12(3-4), 253–308 (2001); Special issue: Applications of Gröbner bases to multidimensional systems and signal processing

    Article  MathSciNet  MATH  Google Scholar 

  9. Regensburger, G., Rosenkranz, M.: An algebraic foundation for factoring linear boundary problems. Ann. Mat. Pura Appl (4) 188(1), 123–151 (2009), doi:10.1007/s10231-008-0068-3

    Article  MathSciNet  MATH  Google Scholar 

  10. Renardy, M., Rogers, R.C.: An introduction to partial differential equations, 2nd edn. Texts in Applied Mathematics, vol. 13. Springer, New York (2004)

    MATH  Google Scholar 

  11. Rosenkranz, M.: A new symbolic method for solving linear two-point boundary value problems on the level of operators. J. Symbolic Comput. 39(2), 171–199 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rosenkranz, M.: Functorial programming & integro-differential operators. In: Talk at the International Mathematica Symposium (IMS 2012), London, United Kingdom, June 13 (2012), http://www.homepages.ucl.ac.uk/ ucahwts/ims2012/ims2012announce1/IMS2012.html

    Google Scholar 

  13. Rosenkranz, M., Regensburger, G.: Solving and factoring boundary problems for linear ordinary differential equations in differential algebras. Journal of Symbolic Computation 43(8), 515–544 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: A symbolic framework for operations on linear boundary problems. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743, pp. 269–283. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: Symbolic analysis of boundary problems: From rewriting to parametrized Gröbner bases. In: Langer, U., Paule, P. (eds.) Numerical and Symbolic Scientific Computing: Progress and Prospects, pp. 273–331. Springer (2012)

    Google Scholar 

  16. Stakgold, I.: Green’s functions and boundary value problems. John Wiley & Sons, New York (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Rosenkranz, M., Phisanbut, N. (2013). A Symbolic Approach to Boundary Problems for Linear Partial Differential Equations. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2013. Lecture Notes in Computer Science, vol 8136. Springer, Cham. https://doi.org/10.1007/978-3-319-02297-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02297-0_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02296-3

  • Online ISBN: 978-3-319-02297-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics