Nothing Special   »   [go: up one dir, main page]

Skip to main content

Novel Matrix Based Feature Extraction Method for Face Recognition Using Gaborface Features

  • Conference paper
Genetic and Evolutionary Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 238))

Abstract

This study proposes a framework to integrate the Gaborface features and the matrix based feature extraction method for face recognition. In this framework, we first select a subset of Gaborfaces to construct the optimal ensemble Gaborface. Then, a two-phase matrix based feature extraction method, i.e.: two-dimensional linear discriminant analysis (2DLDA) plus multi-subspaces principle component analysis (MSPCA), is developed to directly and effectively extract features from the optimal ensemble Gaborface matrixes. Experiment results on ORL and AR face datasets demonstrate the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Xu, Y., Zhong, A., Yang, J., Zhang, D.: LPP solution schemes for use with face recognition. Pattern Recognition 43(12), 4165–41761 (2010)

    Article  MATH  Google Scholar 

  2. Fan, Z., Xu, Y., Zhang, D.: Local linear discriminant analysis framework using sample neighbors. IEEE Transactions on Neural Networks 22(7), 1119–11321 (2011)

    Article  Google Scholar 

  3. Chen, Y.-W., Xu, R., Ushikome, A.: Serially-connected dual 2d pca for efficient face representation and face recognition. International Journal of Innovative Computing, Information and Control 5(11), 4367–4372

    Google Scholar 

  4. Xu, Y., Zhang, D., Yang, J., Jin, Z., Yang, J.: Evaluate dissimilarity of samples in feature space for improving KPCA. International Journal of Information Technology & Decision Making 10(3), 479–495 (2011)

    Article  Google Scholar 

  5. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  6. Xu, Y., Zhang, D., Jin, Z., Li, M., Yang, J.-Y.: A fast kernel-based nonlinear discriminant analysis for multi-class problems. Pattern Recognition 39(6), 1026–1033 (2006)

    Article  MATH  Google Scholar 

  7. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Machine Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  8. Gao, Q., Zhang, L., Zhang, D.: Face Recognition using FLDA with Single Training Image Per-person. Applied Mathematics and Computation 205, 726–734 (2008)

    Article  MATH  Google Scholar 

  9. Xu, Y., Zhang, D., Yang, J., Yang, J.Y.: An approach for directly extracting features from matrix data and its application in face recognition. Neurocomputing 71, 1857–1865 (2008)

    Article  Google Scholar 

  10. Gao, Q., Zhang, L., Zhang, D., Xu, H.: Independent components extraction from image matrix. Pattern Recognition Letters 31(3), 171–178 (2010)

    Article  Google Scholar 

  11. Yang, W., Wang, J., Ren, M., Zhang, L., Yang, J.: Feature extraction using fuzzy inverse FDA. Neurocomputing 72(13-15), 3384–3390 (2009)

    Article  Google Scholar 

  12. Zhang, Q., Zhou, C.J., Zhao, J.: Face Recognition Based on FLDA, CPCA and Improved HMM. International Journal of Innovative Computing, Information and Control 6(2), 801–808 (2010)

    MathSciNet  Google Scholar 

  13. Li, M., Yuan, B.Z.: 2D-LDA: A statistical linear discriminant analysis for image matrix. Pattern Recognition Letters 26, 527–532 (2005)

    Article  Google Scholar 

  14. Xu, Y., Zhang, D.: Represent and fuse bimodal biometric images at the feature level: complex-matrixbased fusion scheme. Optical Engineering 49(3) (2010)

    Google Scholar 

  15. Wang, L., et al.: 2D Gaborface representation method for face recognition with ensemble and multichannel model. Image and Vision Computing 26, 820–828 (2008)

    Article  Google Scholar 

  16. Lee, Y.-C., Chen, C.-H.: A Gabor Feature Based Horizontal and Vertical Discriminant for Face Verification. International Journal of Innovative Computing, Information and Control 9(5), 2111–2123 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhu, Q., Xu, Y., Lu, Y., Wen, J., Fan, Z., Li, Z. (2014). Novel Matrix Based Feature Extraction Method for Face Recognition Using Gaborface Features. In: Pan, JS., Krömer, P., Snášel, V. (eds) Genetic and Evolutionary Computing. Advances in Intelligent Systems and Computing, vol 238. Springer, Cham. https://doi.org/10.1007/978-3-319-01796-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01796-9_38

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01795-2

  • Online ISBN: 978-3-319-01796-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics