Summary
This paper introduces the ShortestPathTreeACO algorithm designed for finding near-optimal and optimal solutions for the shortest path tree problem. The algorithm is based on Ant Colony Optimization metaheuristic, and therefore it is of significant importance to choose proper operation parameters that guarantee the results of required quality. The operation of the algorithm is explained in relation to the pseudocode introduced in the paper. An exemplary execution of the algorithm is depicted and discussed on a step-by-step basis. The experiments carried out within the custom-made framework of the experiment are the source of suggestions concerning the parameter values. The influence of the choice of the number of ants and the pheromone evaporation speed is investigated. The quality of generated solutions is addressed, as well as the issues of execution time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wu, B.Y., Chao, K.-M.: Spanning Trees and Optimization Problems. Chapman & Hall/CRC Press, USA (2004)
Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Cambridge (2004)
Głąbowski, M., Musznicki, B., Nowak, P., Zwierzykowski, P.: Shortest Path Problem Solving Based on Ant Colony Optimization Metaheuristic. International Journal of Image Processing & Communications 17(1-2), 7–17 (2012)
Głąbowski, M., Musznicki, B., Nowak, P., Zwierzykowski, P.: ShortestPathACO based strategy to find the Shortest Path between two nodes. In: Proceedings of 2013 IEICE Information and Communication Technology Forum (ICTF), Sarajevo, Bosnia and Herzegovina, pp. 29–31 (May 2013)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT Press, Cambridge (2009)
Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)
Bertsekas, D.P.: Network Optimization: Continuos and Discrete Models. Athena Scientific, Belmont (1998)
Maxemchuk, N.F., Shur, D.H.: An Internet multicast system for the stock market. ACM Transactions on Computer Systems 19(3), 384–412 (2001)
Pragyansmita, P., Raghavan, S.V.: Survey of Multicast Routing Algorithms and Protocols. In: Proceedings of ICCC 2002, the Fifteenth International Conference on Computer Communication, Washington, DC, USA, pp. 902–926 (2002)
Piechowiak, M., Zwierzykowski, P.: The Evaluation of Unconstrained Multicast Routing Algorithms in Ad-Hoc Networks. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2012. CCIS, vol. 291, pp. 344–351. Springer, Heidelberg (2012)
Musznicki, B., Tomczak, M., Zwierzykowski, P.: Dijkstra-based Localized Multicast Routing in Wireless Sensor Networks. In: Proceedings of CSNDSP 2012, 8th IEEE, IET International Symposium on Communication Systems, Networks and Digital Signal Processing, Poznań, Poland, pp. 18–20 (July 2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Głąbowski, M., Musznicki, B., Nowak, P., Zwierzykowski, P. (2014). An Algorithm for Finding Shortest Path Tree Using Ant Colony Optimization Metaheuristic. In: S. Choras, R. (eds) Image Processing and Communications Challenges 5. Advances in Intelligent Systems and Computing, vol 233. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-01622-1_36
Download citation
DOI: https://doi.org/10.1007/978-3-319-01622-1_36
Publisher Name: Springer, Heidelberg
Print ISBN: 978-3-319-01621-4
Online ISBN: 978-3-319-01622-1
eBook Packages: EngineeringEngineering (R0)