Nothing Special   »   [go: up one dir, main page]

Skip to main content

Adaptive Windowed Threshold for Box Counting Algorithm in Cytoscreening Applications

  • Conference paper
Image Processing and Communications Challenges 5

Summary

Two threshold techniques are compared in this paper for the application of the box–counting algorithm. The single threshold is sensitive on the selection of the threshold value. Application of the proposed, adaptive windowed threshold allows selection of the threshold values using standard deviation and mean value. The application of the windowed threshold allows preclassification of cell nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mandelbrot, B.B.: The Fractal Geometry of the Nature. W.H. Freeman and Company (1983)

    Google Scholar 

  2. Peitgen, H.O., Jürgens, H., Saupe, D.: Fractals for the Classrooms, vol. 1. Springer (1991)

    Google Scholar 

  3. Jeleń, L., Fevens, T., Krzyzak, A.: Classification of breast cancer malignancy using cytological images of fine needle aspiration biopsies. International Journal of Applied Mathematics and Computer Science 18(1), 75–83 (2008)

    Google Scholar 

  4. Obuchowicz, A., Hrebień, M., Nieczkowski, T., Marciniak, A.: Computational intelligence techniques in image segmentation for cytopathology. In: Smolinski, T.G., Milanova, M.G., Hassanien, A.-E. (eds.) Computational Intelligence in Biomedicine and Bioinformatics. SCI, vol. 151, pp. 169–199. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Hrebień, M., Stec, P., Nieczkowski, T., Obuchowicz, A.: Segmentation of breast cancer fine needle biopsy cytological images. International Journal of Applied Mathematics and Computer Science 18(2), 159–170 (2008)

    MATH  Google Scholar 

  6. Filipczuk, P., Wojtak, W., Obuchowicz, A.: Automatic nuclei detection on cytological images using the firefly optimization algorithm. In: Piętka, E., Kawa, J. (eds.) ITIB 2012. LNCS, vol. 7339, pp. 85–92. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Hrebień, M., Korbicz, J., Obuchowicz, A.: Hough transform (1+1) search strategy and watershed algorithm in segmentation of cytological images. In: Kurzynski, M., et al. (eds.) Computer Recognition Systems 2. ASC, vol. 45, pp. 550–557. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Forczmański, P.: Comparison of Tensor Unfolding Variants for 2DPCA-Based Color Facial Portraits Recognition. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 345–353. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Frejlichowski, D., Forczmański, P.: General Shape Analysis Applied to Stamps Retrieval from Scanned Documents. In: Dicheva, D., Dochev, D. (eds.) AIMSA 2010. LNCS (LNAI), vol. 6304, pp. 251–260. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Piórkowski, A.: An Algorithm for Objects Straightening in M-Mode Echocardiography Images. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 4. AISC, vol. 184, pp. 33–38. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Metze, K.: Fractal dimension of chromatin and cancer prognosis. Epigenomics 2(5), 601–604 (2010)

    Article  Google Scholar 

  12. Adam, R.L., Silva, R.C., Pereira, F.G., Leite, N.J., Lorand-Metze, I., Metze, K.: The fractal dimension of nuclear chromatin as a prognostic factor in acute precursor B lymphoblastic leukemia. Cellular Oncology 28, 55–59 (2006)

    Google Scholar 

  13. Ferro, D.P., Falconi, M.A., Adam, R.L., Ortega, M.M., Lima, C.P., de Souza, C.A., Lorand-Metze, I., Metze, K.: Fractal characteristics of Grünwald-Giemsa stained chromatin are independent prognostic factors for survival in multiple myeloma. PLoS One 6(6), 1–8 (2011)

    Article  Google Scholar 

  14. Bedin, V., Adam, R.L., de Sa, B., Landman, G., Metze, K.: Fractal dimension of chromatin is an independent prognostic factor for survival in melanoma. BMC Cancer 10(260), 1–6 (2010)

    Google Scholar 

  15. Clarke, K.C.: Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method. Computer and Geoscience 12(5), 713–722 (1986)

    Article  Google Scholar 

  16. Sun, W.: Three new implementations of the triangular prism method for computing the fractal dimension of remote sensing images. Photogrammetric Engineering & Remote Sensing 72(4), 372–382 (2006)

    Google Scholar 

  17. Oszutowska-Mazurek, D., Mazurek, P., Sycz, K., Waker-Wójciuk, G.: Estimation of fractal dimension according to optical density of cell nuclei in Papanicolaou smears. In: Piętka, E., Kawa, J. (eds.) ITIB 2012. LNCS, vol. 7339, pp. 456–463. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Oszutowska, D., Purczyński, J.: Estimation of the fractal dimension using tiled triangular prism method for biological non-rectangular objects. Electrical Review R.88(10b), 261–263 (2012)

    Google Scholar 

  19. Atkinson, P.A.: Spatial Statistics. In: Spatial Statistics and Remote Sensing, pp. 57–82. Kluwer Academic Publishers (2002)

    Google Scholar 

  20. Kaye, B.H.: A Random Walk Through Fractal Dimensions. VCH (1994)

    Google Scholar 

  21. Goodchild, M.F.: Fractals and the accuracy of geographical measures. Mathematical Geology 12, 85–98 (1980)

    Article  MathSciNet  Google Scholar 

  22. Parker, J.R.: Algorithms for Image Processing and Computer Vision. Wiley (1997)

    Google Scholar 

  23. Voss, R.F.: Fractals in nature: From characterization to simulation. In: The Science of Fractal Images, pp. 21–70. Springer (1998)

    Google Scholar 

  24. Oszutowska–Mazurek, D., Mazurek, P., Sycz, K., Waker–Wójciuk, G.: Variogram Based Estimator of Fractal Dimension for the Analysis of Cell Nuclei from the Papanicolaou Smears. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 4. AISC, vol. 184, pp. 47–54. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorota Oszutowska-Mazurek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Oszutowska-Mazurek, D., Mazurek, P., Sycz, K., Waker-Wójciuk, G. (2014). Adaptive Windowed Threshold for Box Counting Algorithm in Cytoscreening Applications. In: S. Choras, R. (eds) Image Processing and Communications Challenges 5. Advances in Intelligent Systems and Computing, vol 233. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-01622-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01622-1_1

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-01621-4

  • Online ISBN: 978-3-319-01622-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics