Summary
Two threshold techniques are compared in this paper for the application of the box–counting algorithm. The single threshold is sensitive on the selection of the threshold value. Application of the proposed, adaptive windowed threshold allows selection of the threshold values using standard deviation and mean value. The application of the windowed threshold allows preclassification of cell nuclei.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mandelbrot, B.B.: The Fractal Geometry of the Nature. W.H. Freeman and Company (1983)
Peitgen, H.O., Jürgens, H., Saupe, D.: Fractals for the Classrooms, vol. 1. Springer (1991)
Jeleń, L., Fevens, T., Krzyzak, A.: Classification of breast cancer malignancy using cytological images of fine needle aspiration biopsies. International Journal of Applied Mathematics and Computer Science 18(1), 75–83 (2008)
Obuchowicz, A., Hrebień, M., Nieczkowski, T., Marciniak, A.: Computational intelligence techniques in image segmentation for cytopathology. In: Smolinski, T.G., Milanova, M.G., Hassanien, A.-E. (eds.) Computational Intelligence in Biomedicine and Bioinformatics. SCI, vol. 151, pp. 169–199. Springer, Heidelberg (2008)
Hrebień, M., Stec, P., Nieczkowski, T., Obuchowicz, A.: Segmentation of breast cancer fine needle biopsy cytological images. International Journal of Applied Mathematics and Computer Science 18(2), 159–170 (2008)
Filipczuk, P., Wojtak, W., Obuchowicz, A.: Automatic nuclei detection on cytological images using the firefly optimization algorithm. In: Piętka, E., Kawa, J. (eds.) ITIB 2012. LNCS, vol. 7339, pp. 85–92. Springer, Heidelberg (2012)
Hrebień, M., Korbicz, J., Obuchowicz, A.: Hough transform (1+1) search strategy and watershed algorithm in segmentation of cytological images. In: Kurzynski, M., et al. (eds.) Computer Recognition Systems 2. ASC, vol. 45, pp. 550–557. Springer, Heidelberg (2007)
Forczmański, P.: Comparison of Tensor Unfolding Variants for 2DPCA-Based Color Facial Portraits Recognition. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 345–353. Springer, Heidelberg (2012)
Frejlichowski, D., Forczmański, P.: General Shape Analysis Applied to Stamps Retrieval from Scanned Documents. In: Dicheva, D., Dochev, D. (eds.) AIMSA 2010. LNCS (LNAI), vol. 6304, pp. 251–260. Springer, Heidelberg (2010)
Piórkowski, A.: An Algorithm for Objects Straightening in M-Mode Echocardiography Images. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 4. AISC, vol. 184, pp. 33–38. Springer, Heidelberg (2013)
Metze, K.: Fractal dimension of chromatin and cancer prognosis. Epigenomics 2(5), 601–604 (2010)
Adam, R.L., Silva, R.C., Pereira, F.G., Leite, N.J., Lorand-Metze, I., Metze, K.: The fractal dimension of nuclear chromatin as a prognostic factor in acute precursor B lymphoblastic leukemia. Cellular Oncology 28, 55–59 (2006)
Ferro, D.P., Falconi, M.A., Adam, R.L., Ortega, M.M., Lima, C.P., de Souza, C.A., Lorand-Metze, I., Metze, K.: Fractal characteristics of Grünwald-Giemsa stained chromatin are independent prognostic factors for survival in multiple myeloma. PLoS One 6(6), 1–8 (2011)
Bedin, V., Adam, R.L., de Sa, B., Landman, G., Metze, K.: Fractal dimension of chromatin is an independent prognostic factor for survival in melanoma. BMC Cancer 10(260), 1–6 (2010)
Clarke, K.C.: Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method. Computer and Geoscience 12(5), 713–722 (1986)
Sun, W.: Three new implementations of the triangular prism method for computing the fractal dimension of remote sensing images. Photogrammetric Engineering & Remote Sensing 72(4), 372–382 (2006)
Oszutowska-Mazurek, D., Mazurek, P., Sycz, K., Waker-Wójciuk, G.: Estimation of fractal dimension according to optical density of cell nuclei in Papanicolaou smears. In: Piętka, E., Kawa, J. (eds.) ITIB 2012. LNCS, vol. 7339, pp. 456–463. Springer, Heidelberg (2012)
Oszutowska, D., Purczyński, J.: Estimation of the fractal dimension using tiled triangular prism method for biological non-rectangular objects. Electrical Review R.88(10b), 261–263 (2012)
Atkinson, P.A.: Spatial Statistics. In: Spatial Statistics and Remote Sensing, pp. 57–82. Kluwer Academic Publishers (2002)
Kaye, B.H.: A Random Walk Through Fractal Dimensions. VCH (1994)
Goodchild, M.F.: Fractals and the accuracy of geographical measures. Mathematical Geology 12, 85–98 (1980)
Parker, J.R.: Algorithms for Image Processing and Computer Vision. Wiley (1997)
Voss, R.F.: Fractals in nature: From characterization to simulation. In: The Science of Fractal Images, pp. 21–70. Springer (1998)
Oszutowska–Mazurek, D., Mazurek, P., Sycz, K., Waker–Wójciuk, G.: Variogram Based Estimator of Fractal Dimension for the Analysis of Cell Nuclei from the Papanicolaou Smears. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 4. AISC, vol. 184, pp. 47–54. Springer, Heidelberg (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Oszutowska-Mazurek, D., Mazurek, P., Sycz, K., Waker-Wójciuk, G. (2014). Adaptive Windowed Threshold for Box Counting Algorithm in Cytoscreening Applications. In: S. Choras, R. (eds) Image Processing and Communications Challenges 5. Advances in Intelligent Systems and Computing, vol 233. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-01622-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-01622-1_1
Publisher Name: Springer, Heidelberg
Print ISBN: 978-3-319-01621-4
Online ISBN: 978-3-319-01622-1
eBook Packages: EngineeringEngineering (R0)