Nothing Special   »   [go: up one dir, main page]

Skip to main content

Motion Compensated Catheter Ablation of the Beating Heart Using Image Guidance and Force Control

  • Chapter
Experimental Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 88))

Abstract

Cardiac catheters allow physicians to access the inside of the heart and perform therapeutic interventions without stopping the heart or opening the chest. However, conventional manual and actuated cardiac catheters are currently unable to precisely track and manipulate the intracardiac tissue structures because of the fast tissue motion and potential for applying damaging forces. This paper addresses these challenges by proposing and implementing a robotic catheter system that use 3D ultrasound image guidance and force control to enable constant contact with a moving target surface in order to perform an interventional procedure, in this case tissue ablation. The robotic catheter system, consisting of a catheter module, ablation and force sensing end effector, drive system, and image-guidance and control system, was commanded to apply a constant force against a moving target using a position-modulated force control method. As compared to a manual catheter system, the robotic catheter was able to apply a more consistent force on the target while maintaining ablation electrode contact with 97% less RMS contact resistance variation. These results demonstrate that the 3D ultrasound guidance and force control allow the robotic system to maintain better contact with a moving tissue structure, thus allowing for more accurate and repeatable tissue ablation procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baim, D.S. (ed.): Grossman’s Cardiac Catheterization, Angiography, and Intervention. Lippincott Williams & Wilkins, Philadelphia (2005)

    Google Scholar 

  2. Murkin, J.M., Boyd, W.D., Ganapathy, S., Adams, S.J., Peterson, R.C.: Beating heart surgery: why expect less central nervous system morbidity? Annals of Thoracic Surgery 68, 1498–1501 (1999)

    Article  Google Scholar 

  3. Roach, G.W., Kanchuger, M., Mangano, C.M., Newman, M., Nussmeier, N., Wolman, R., Aggarwal, A., Marschall, K., Graham, S.H., Ley, C.: Adverse cerebral outcomes after coronary bypass surgery. N. Engl. J. Med. 335, 1857–1864 (1996)

    Article  Google Scholar 

  4. Camarillo, D.B., Milne, C.F., Carlson, C.R., Zinn, M.R., Salisbury, J.K.: Mechanics Modeling of Tendon-Driven Continuum Manipulators. IEEE Transactions on Robotics 24, 1262–1273 (2008)

    Article  Google Scholar 

  5. Beyar, R.: within the heart and vessels in clinical practice. Ann. N. Y. Acad. Sci. 1188, 207–213 (2010)

    Article  Google Scholar 

  6. Huang, S.K., Huang, S.K.S., Wilber, D.J.: Radiofrequency Catheter Ablation of Cardiac Arrhythmias: Basic Concepts and Clinical Applications. Wiley-Blackwell (2000)

    Google Scholar 

  7. Okumura, Y., Johnson, S., Packer, D.: An analysis of catheter tip/tissue contact force-induced distortion of three-dimensional electroanatomical mapping created using the Sensei robotic catheter system. Heart Rhythm 4, S318 (2007)

    Google Scholar 

  8. Kalman, J.M., Fitzpatrick, A.P., Olgin, J.E., Chin, M.C., Lee, R.J., Scheinman, M.M., Lesh, M.D.: Biophysical characteristics of radiofrequency lesion formation in vivo: dynamics of catheter tip-tissue contact evaluated by intracardiac echocardiography. Am. Heart J. 133, 8–18 (1997)

    Article  Google Scholar 

  9. Shah, D.C., Lambert, H., Nakagawa, H., Langenkamp, A., Aeby, N., Leo, G.: Area Under the Real‐Time Contact Force Curve (Force–Time Integral) Predicts Radiofrequency Lesion Size in an In Vitro Contractile Model. J. Cardiovasc. Electrophysiol. 21, 1038–1043 (2010)

    Article  Google Scholar 

  10. Shah, D., Lambert, H., Langenkamp, A., Vanenkov, Y., Leo, G., Gentil-Baron, P., Walpoth, B.: Catheter tip force required for mechanical perforation of porcine cardiac chambers. Europace 13, 277 (2011)

    Article  Google Scholar 

  11. Kesner, S.B., Howe, R.D.: Position Control of Motion Compensation Cardiac Catheters. IEEE Transactions on Robotics 27, 1045–1055 (2011)

    Article  Google Scholar 

  12. Kesner, S.B., Howe, R.D.: Design Principles for Rapid Prototyping Forces Sensors Using 3-D Printing. IEEE/ASME Transactions on Mechatronics 16, 866–870 (2011)

    Article  Google Scholar 

  13. Kesner, S.B., Howe, R.D.: Force control of flexible catheter robots for beating heart surgery. In: Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 1589–1594 (2011)

    Google Scholar 

  14. Ginhoux, R., Gangloff, J., de Mathelin, M., Soler, L., Sanchez, M.M.A., Marescaux, J.: Active filtering of physiological motion in robotized surgery using predictive control. IEEE Transactions on Robotics 21, 67–79 (2005)

    Article  Google Scholar 

  15. Bebek, O., Cavusoglu, M.: Intelligent control algorithms for robotic assisted beating heart surgery. IEEE Transactions on Robotics 23, 468–480 (2007)

    Article  Google Scholar 

  16. Nakamura, Y., Kishi, K., Kawakami, H.: Heartbeat synchronization for robotic cardiac surgery. In: Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2014–2019 (2001)

    Google Scholar 

  17. Novotny, P.M., Stoll, J.A., Vasilyev, N.V., Del Nido, P.J., Dupont, P.E., Zickler, T.E., Howe, R.D.: GPU based real-time instrument tracking with three-dimensional ultrasound. Med. Image Anal. 11, 458–464 (2007)

    Article  Google Scholar 

  18. Novotny, P.M., Stoll, J.A., Dupont, P.E., Howe, R.D.: Real-time visual servoing of a robot using three-dimensional ultrasound. In: Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2655–2660 (2007)

    Google Scholar 

  19. Yuen, S.G., Novotny, P.M., Howe, R.D.: Quasiperiodic predictive filtering for robot-assisted beating heart surgery. In: Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 3875–3880 (2008)

    Google Scholar 

  20. Yuen, S.G., Kettler, D.T., Novotny, P.M., Plowes, R.D., Howe, R.D.: Robotic motion compensation for beating heart intracardiac surgery. The International Journal of Robotics Research 28, 1355 (2009)

    Article  Google Scholar 

  21. Eppinger, S., Seering, W.: Understanding bandwidth limitations in robot force control. In: Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 904–909 (1987)

    Google Scholar 

  22. Townsend, W., Salisbury Jr., J.: The effect of coulomb friction and stiction on force control. In: Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 883–889 (1987)

    Google Scholar 

  23. Maples, J., Becker, J.: Experiments in force control of robotic manipulators. In: Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 695–702 (1986)

    Google Scholar 

  24. Chiaverini, S., Siciliano, B., Villani, L.: A survey of robot interaction control schemes with experimental comparison. IEEE/ASME Transactions on Mechatronics 4, 273–285 (1999)

    Article  Google Scholar 

  25. Kettler, D.T., Plowes, R.D., Novotny, P.M., Vasilyev, N.V., del Nido, P.J., Howe, R.D.: An active motion compensation instrument for beating heart mitral valve surgery. In: Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1290–1295 (2007)

    Google Scholar 

  26. Yuen, S.G., Kesner, S.B., Vasilyev, N.V., del Nido, P.J., Howe, R.D.: 3D ultrasound-guided motion compensation system for beating heart mitral valve repair. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 711–719. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Kesner, S.B., Yuen, S.G., Howe, R.D.: Ultrasound servoing of catheters for beating heart valve repair. In: Navab, N., Jannin, P. (eds.) IPCAI 2010. LNCS, vol. 6135, pp. 168–178. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel B. Kesner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kesner, S.B., Howe, R.D. (2013). Motion Compensated Catheter Ablation of the Beating Heart Using Image Guidance and Force Control. In: Desai, J., Dudek, G., Khatib, O., Kumar, V. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 88. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00065-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00065-7_39

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00064-0

  • Online ISBN: 978-3-319-00065-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics