Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Simplified Latent Variable Structural Equation Model with Observable Variables Assessed on Ordinal Scales

  • Conference paper
  • First Online:
Statistical Models for Data Analysis

Abstract

The communication is related to a wide empirical research promoted by the Università Cattolica del Sacro Cuore of Milan (UCSC) aimed at acquiring an insight into the real work possibilities of its graduates in the last seven years, as well as the appreciation and satisfaction of the firms which offered them a job position. The group of 1,264 firms which have a special connection with UCSC, regarding new job appointments, was considered and they were given a questionnaire, using web for sending and answering. The analysis of the 203 complete answers was conducted by having recourse to a structural equation model with latent variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.

    MATH  Google Scholar 

  • Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen, & J. S. Long (Eds.) Testing structural equation models (pp. 136–162). Newbury Park: Sage.

    Google Scholar 

  • Chiandotto, B. (2004). Sulla misura della qualità della formazione universitaria. Studi e note di economia, 3, 27–61.

    Google Scholar 

  • Farrell, A. M. (2010). Insufficient discriminant validity: A comment on Bove, Pervan, Beatty and Shiu (2009). Journal of Business Research, 63, 324–327.

    Article  Google Scholar 

  • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50.

    Article  Google Scholar 

  • Green, S. B., & Yang, Y. (2009). Reliability of summed item scores using structural equation modeling: an alternative to coefficient alpha. Psychometrika, 74(1), 155–167.

    Article  MathSciNet  MATH  Google Scholar 

  • Jöreskog, K. G. (2005). Structural equation modeling with ordinal variables using LISREL. http://www.ssicentral.com/lisrel/techdocs/ordinal.pdf. Cited 14 May 2012.

  • Jöreskog, K. G. (1994). On the estimation of polychoric correlations and their asymptotic covariance matrix. Psychometrika, 59, 381–389.

    Article  MathSciNet  MATH  Google Scholar 

  • Muthén, B. O. (1984). A general structural equation model with dichotomous, ordered, categorical, and continuous latent variable indicators. Psychometrika, 49, 115–132.

    Article  Google Scholar 

  • Raykov, T. (2002). Scale reliability evaluation with LISREL 8.50. http://www.ssicentral.com/lisrel/techdocs/reliabil.pdf. Cited 14 May 2012.

  • Raykov, T. (2002). Analytic estimation of standard error and confidence interval for scale reliability. Multivariate Behavioral Research, 37(1), 89–103.

    Article  Google Scholar 

  • Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36.

    Google Scholar 

  • Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of Cronbach’s alpha. Psychometrika, 74(1), 107–120.

    Article  MathSciNet  MATH  Google Scholar 

  • Winship, C., & Mare, R. D. (1984). Regression models with ordinal variables. American Sociological Review, 49, 512–525.

    Article  Google Scholar 

  • Zanella, A., Boari, G., Baldi, P. L., Cantaluppi, G., & Facchinetti, D. (2011). Soddisfazione delle aziende nei confronti dei collaboratori laureati all’Università Cattolica del Sacro Cuore di Milano. In B. V. Frosini (Ed.) La valutazione della ricerca e la valutazione della didattica (pp. 147–175). Milano: Vita e Pensiero.

    Google Scholar 

  • Zanella, A., & Cantaluppi, G. (2006). Some remarks on a test for assessing whether Cronbach’s coefficient α exceeds a given theoretical value. Statistica Applicata, 18, 251–275.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Boari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Zanella, A., Boari, G., Bonanomi, A., Cantaluppi, G. (2013). A Simplified Latent Variable Structural Equation Model with Observable Variables Assessed on Ordinal Scales. In: Giudici, P., Ingrassia, S., Vichi, M. (eds) Statistical Models for Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00032-9_43

Download citation

Publish with us

Policies and ethics