Abstract
To model Euclidean spaces in computerized geometric calculations, the Geometric Algebra framework is becoming popular in computer vision, image analysis, etc. Focusing on the Conformal Geometric Algebra, the claim of the paper is that this framework is useful in digital geometry too. To illustrate this, this paper shows how the Conformal Geometric Algebra allow to simplify the description of digital objects, such as k-dimensional circles in any n-dimensional discrete space. Moreover, the notion of duality is an inherent part of the Geometric Algebra. This is particularly useful since many algorithms are based on this notion in digital geometry. We illustrate this important aspect with the definition of k-dimensional spheres.
Chapter PDF
Similar content being viewed by others
References
Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. Graphical Models and Image Processing 59(5), 302–309 (1997)
Andres, E., Jacob, M.-A.: The discrete analytical hyperspheres. IEEE Transactions on Visualization and Computer Graphics 3(1), 75–86 (1997)
Aragon-Camarasa, G., Aragon-Gonzalez, G., Aragon, J.L., Rodriguez-Andrade, M.A.: Clifford Algebra with Mathematica. ArXiv e-prints (October 2008)
Aveneau, L., Andres, E., Mora, F.: Expressing discrete geometry using the conformal model. Presented at AGACSE 2012, La Rochelle, France (2012), http://hal.archives-ouvertes.fr/hal-00865103
Bayro-Corrochano, E., Scheuermann, G. (eds.): Geometric Algebra Computing in Engineering and Computer Science. Springer (2010)
Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object Oriented Approach to Geometry. Morgan Kauffmann Publishers (2007)
Dorst, L., Lasenby, J. (eds.): Guide to Geometric Algebra in Practice (Proceedings of AGACSE 2010). Springer (2011)
Fontijne, D., Dorst, L., Bouma, T., Mann, S.: GAviewer, interactive visualization software for geometric algebra (2010), Downloadable at http://www.geometricalgebra.net/downloads.html
Fuchs, L., Théry, L.: Implementing geometric algebra products with binary trees. Advances in Applied Clifford Algebra (published online first, 2014), http://dx.doi.org/10.1007/s00006-014-0447-3
Hestenes, D.: New Foundations for Classical Mechanics. D. Reidel Publ. Co., Dordrecht (1986)
Hildenbrand, D.: Foundations of Geometric Algebra Computing. Geometry and Computing, vol. 8. Springer (2013)
McDonald, A.: A survey of geometric algebra and geometric calculus (2013), http://faculty.luther.edu/~macdonal/index.html#GA&GC (last checked February 2014)
Perwass, C.: Geometric Algebra with Applications in Engineering. Springer (2009)
Reveillès, J.-P.: Géométrie Discrète, calculs en nombres entiers et algorithmique. Thèse d’état, Université Louis Pasteur, Strasbourg, France (1991)
Sommer, G.: Geometric computing with Clifford algebras: theoretical foundations and applications in computer vision and robotics. Springer (2001)
Tajine, M., Ronse, C.: Hausdorff discretizations of algebraic sets and diophantine sets. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 99–110. Springer, Heidelberg (2000)
Wareham, R., Cameron, J., Lasenby, J.: Applications of conformal geometric algebra in computer vision and graphics. In: Li, H., J. Olver, P., Sommer, G. (eds.) IWMM-GIAE 2004. LNCS, vol. 3519, pp. 329–349. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Aveneau, L., Fuchs, L., Andres, E. (2014). Digital Geometry from a Geometric Algebra Perspective. In: Barcucci, E., Frosini, A., Rinaldi, S. (eds) Discrete Geometry for Computer Imagery. DGCI 2014. Lecture Notes in Computer Science, vol 8668. Springer, Cham. https://doi.org/10.1007/978-3-319-09955-2_30
Download citation
DOI: https://doi.org/10.1007/978-3-319-09955-2_30
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09954-5
Online ISBN: 978-3-319-09955-2
eBook Packages: Computer ScienceComputer Science (R0)