Nothing Special   »   [go: up one dir, main page]

Skip to main content

Autocovariance Based PCA Method for fMRI Data

  • Conference paper
Brain Informatics and Health (BIH 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8609))

Included in the following conference series:

Abstract

There are various kinds of methods on activated regions detection, including model-driven method and data-driven method, univariate method and multivariate method, frequency domain analysis and time-domain analysis etc. We investigated the problems of principal component analysis applied to activated regions detection,an autocovariance based principal component analysis method was proposed. Firstly,the time series were converted to the autocovariance series, and then the principal component analysis was employed. Meanwhile, the tactic of principal component selection was discussed. The validity of the proposed method was illustrated by experiments on a synthetic dataset and a real dataset. It was shown that the error rate of the new approach was lower compared with the principal component analysis itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baumgartner, R., Ryner, L., Richter, W., Summers, R., Jarmasz, M., Somorjai, R.: Comparison of Two Exploratory Data Analysis Methods for fMRI: Fuzzy Clustering vs. Principal Component Analysis. Magnetic Resonance in Medicine 18, 89–94 (2000)

    Google Scholar 

  2. Hansen, L.K., Larsen, F.A., Nielsen, S.C., Strother, E., Rostrup, E., Savoy, R., Svarer, C., Paulson, O.B.: Generalizable Patterns in NeuroImaging: How Many Principal Components. NeuroImage 9, 534–544 (1999)

    Article  Google Scholar 

  3. Friston, K.J., Frith, C.D., Liddle, P.F., Frackowiak, R.S.J.: Functional connectivity: the principal component analysis of large (PET) data sets. J. Cereb. Blood Flow Metab. 13, 5–14 (1993)

    Article  Google Scholar 

  4. Friston, K., Phillips, J., Chawla, D., Buchel, C.: Revealing interactions among brain systems with nonlinear PCA. Hum. Brain Mapp. 8, 92–97 (1999)

    Article  Google Scholar 

  5. Rogers, B.P., Morgan, V.L., Newton, A.T., Gore, J.C.: Assessing functional connectivity in the human brain by fMRI. Magn. Reson. Imaging 25, 1347–1357 (2007)

    Article  Google Scholar 

  6. Ye, J., Lazar, N.A., Li, Y.: Sparse geostatistical analysis in clustering fMRI time series. Journal of Neuroscience Methods 199, 336–345 (2011)

    Article  Google Scholar 

  7. Ecker, C., Reynaud, E., Williams, S.C., Brammer, M.J.: Detecting functional nodes in large-scale cortical networks with functional magnetic resonance imaging: A principal component analysis of the human visual system. Hum. Brain Mapp. 28, 817–834 (2007)

    Google Scholar 

  8. Baumgartner, R., Ryner, L., Richter, W., Summers, R., Jarmasz, M., Somorjai, R.: Comparison of Two Exploratory Data Analysis Methods for fMRI: Fuzzy Clustering vs. Magnetic Resonance in Medicine 18, 89–94 (2000)

    Google Scholar 

  9. Thomas, C.G., Harshman, R.A., Menon, R.S.: Noise reduction in bold-based fMRI using component analysis. NeuroImage 17(3), 1521–1537 (2002)

    Article  Google Scholar 

  10. Andersen, A.H., Gash, D.M., Avison, M.J.: Principal component analysis of the dynamic response measured by fMRI: A generalized linear systems framework. Magn. Reson. Imaging 17, 795–815 (1999)

    Article  Google Scholar 

  11. Liu, D.: Clustering Based Analysis for Human Brain Functional Magnetic Resonance Imaging dataset. Beijing University of Technology, China, doctoral dissertation (2012)

    Google Scholar 

  12. Bjerre, T., Henriksen, J., Rasmussen, P.M., Nielsen, C.H., Hansen, L.K., Madsen, K.H.: Unified ICA-SPM analysis of fMRI experiments - Implementation of an ICA graphical user interface for the SPM pipeline. In: Proceedings of BIOSTEC - BIOSIGNALS 2009 Conference (2009)

    Google Scholar 

  13. Metzak, P., Feredoes, E., Takane, Y., et al.: Constrained principal component analysis reveals functionally connected load-dependent networks involved in multiple stages of working memory. Hum. Brain Mapp. (2010)

    Google Scholar 

  14. Chuang, K., Chiu, M., Lin, C.C., Chen, J.: Model-free Functional MRI Analysis Using Kohonen Clustering Neural Network and Fuzzy C-means. IEEE Transactions on Medical Imaging 18, 1117–1128 (1999)

    Google Scholar 

  15. Kruger, G., Frahm, J., Kleinschmidt, A.: The cerebral blood oxygenation response to functional challenge: Differences between human motor and visual cortex. In: Proc. ISMRM 4th Annu. Meeting, New York, NY (1996)

    Google Scholar 

  16. Liu, D., Lu, W., Zhong, N.: Clustering of fMRI Data Using Affinity Propagation. In: Yao, Y., Sun, R., Poggio, T., Liu, J., Zhong, N., Huang, J. (eds.) BI 2010. LNCS, vol. 6334, pp. 399–406. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Dell’Arciprete, L., Murphy, B., Zanzotto, F.M.: Parallels between Machine and Brain Decoding. Brain Informatics, 162–174 (2012)

    Google Scholar 

  18. Zhong, N., Bradshaw, J.M., Liu, J., Taylor, J.G.: Brain informatics. IEEE Intell. Syst. 26(5), 16–21 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Liu, D., Tian, X., Zhu, L. (2014). Autocovariance Based PCA Method for fMRI Data. In: Ślȩzak, D., Tan, AH., Peters, J.F., Schwabe, L. (eds) Brain Informatics and Health. BIH 2014. Lecture Notes in Computer Science(), vol 8609. Springer, Cham. https://doi.org/10.1007/978-3-319-09891-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09891-3_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09890-6

  • Online ISBN: 978-3-319-09891-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics