Nothing Special   »   [go: up one dir, main page]

Skip to main content

Quantum Hashing via ε-Universal Hashing Constructions and Freivalds’ Fingerprinting Schemas

  • Conference paper
Descriptional Complexity of Formal Systems (DCFS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8614))

Included in the following conference series:

Abstract

We define the concept of a quantum hash generator and offer a design, which allows one to build a large number of different quantum hash functions. The construction is based on composition of a classical ε-universal hash family and a given family of functions – quantum hash generators.

In particular, using the relationship between ε-universal hash families and Freivalds’ fingerprinting schemas we present explicit quantum hash function and prove that this construction is optimal with respect to the number of qubits needed for the construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ablayev, F., Vasiliev, A.: Algorithms for quantum branching programs based on fingerprinting. In: Proceedings Fifth Workshop on Developments in Computational Models–Computational Models From Nature, DCM 2009, Rhodes, Greece, vol. 9, pp. 1–11 (July 11, 2009)

    Google Scholar 

  2. Ablayev, F., Vasiliev, A.: Quantum Hashing, arXiv:1310.4922 (quant-ph) (2013)

    Google Scholar 

  3. Ablayev, F., Vasiliev, A.: Cryptographic quantum hashing. Laser Physics Letters 11(2), 025202 (2014)

    Google Scholar 

  4. Ablayev, F., Ablayev, M.: Quantum Hashing via Classical ε-universal Hashing Constructions, arXiv:1404.1503 (quant-ph) (2014)

    Google Scholar 

  5. Bierbrauer, J., Johansson, T., Kabatianskii, G.A., Smeets, B.J.M.: On Families of Hash Functions via Geometric Codes and Concatenation. In: Stinson, D.R. (ed.) Advances in Cryptology - CRYPTO 1993. LNCS, vol. 773, pp. 331–342. Springer, Heidelberg (1994)

    Google Scholar 

  6. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001)

    Article  Google Scholar 

  7. Carter, J., Wegman, M.: Universal Classes of Hash Functions. J. Computer and System Sciences 18, 143–154 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gavinsky, D., Ito, T.: Quantum fingerprints that keep secrets. Quantum Information & Computation 13(7-8), 583–606 (2013)

    MathSciNet  Google Scholar 

  9. Gottesman, D., Chuang, I.: Quantum digital signatures, T echnical report (2001), http://arxiv.org/abs/quant-ph/0105032

  10. Freivalds, R.: Probabilistic Machines Can Use Less Running Time. In: Proceedings of the IFIP Congress 1977, Toronto, Canada, vol. 1977, pp. 839–842. North-Holland (1977)

    Google Scholar 

  11. Montanaro, A., Osborne, T.: Quantum Boolean functions. Chicago Journal of Theoretical Computer Science 1, arXiv:0810.2435 (2010)

    Google Scholar 

  12. Razborov, A., Szemeredi, E., Wigderson, A.: Constructing small sets that are uniform in arithmetic progressions. Combinatorics, Probability & Computing 2, 513–518 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Stinson, D.R.: On the connections between universal ε-hashing, combinatorial designs and error-correcting codes. Congressus Numerantium 114, 7–27 (1996)

    MATH  MathSciNet  Google Scholar 

  14. Stinson, D.R.: Universal hash families and the leftover hash lemma, and applications to cryptography and computing. Journal of Combinatorial Mathematics and Combinatorial Computing 42, 3–31 (2002)

    MATH  MathSciNet  Google Scholar 

  15. Stinson, D.R.: Cryptography: Theory and Practice, 3rd edn. Discrete Mathematics and Its Applications. CRC Press (2005)

    Google Scholar 

  16. Wigderson, A.: Lectures on the Fusion Method and Derandomization. Technical Report SOCS-95. 2, School of Computer Science, McGill University (file/pub/tech-reports/library/reports/95/TR95.2.ps.gz at the anonymousftpsiteftp.cs.mcgill.ca

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ablayev, F., Ablayev, M. (2014). Quantum Hashing via ε-Universal Hashing Constructions and Freivalds’ Fingerprinting Schemas. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds) Descriptional Complexity of Formal Systems. DCFS 2014. Lecture Notes in Computer Science, vol 8614. Springer, Cham. https://doi.org/10.1007/978-3-319-09704-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09704-6_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09703-9

  • Online ISBN: 978-3-319-09704-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics