Abstract
The paper presents measurements and analysis of a LAN long-range dependence traffic collected in IITiS PAN (The Institute of Theoretical and Applied Informatics of the Polish Academy of Sciences). Several methods of Hurst parameter estimation were used, the results obtained by the methods differ substantially. The analysis was made for the whole traffic and traffics generated by particular types of protocols. We seek for a dependence of Hurst parameter on a protocol type. Then, a MMPP (Markov-Modulated Poisson Process) model was applied to mimic the traces. It allows us to consider Markovian queueing models with long-range dependent and self-similar traffic, an important factor as we dispose an efficient software tool to solve numerically very large continuous-time Markov chains.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
C. Park, F. Hernandez-Campos, L. Long, J. Marron, J. Park, V. Pipiras, F. Smith, R. Smith, M. Trovero, Z. Zhu, Long range dependence analysis of internet traffic. J. Appl. Stat. 38(7), 1407–1433 (2011)
P. Loiseau, P. Gonçalves, G. Dewaele, P. Borgnat, P. Abry, P.V.B. Primet, Investigating self-similarity and heavy-tailed distributions on a large-scale experimental facility. IEEE/ACM Trans. Netw. 18(4), 1261–1274 (2010)
Bhattacharjee, A., Nandi, S.: Statistical analysis of network traffic inter-arrival. In: Proceedings of the 12th International Conference on Advanced Communication Technology, ICACT’10, pp. 1052–1057. IEEE Press (2010)
Y. Kim, P. Min, On the prediction of average queueing delay with self-similar traffic. in: Proceedings of IEEE Globecom’03, vol. 5, pp. 2987–2991 (2003)
A. Gorrasi, R. Restino, Experimental comparison of some scheduling disciplines fed by self-similar traffic. Proc. IEEE Int. Conf. Comm. 1, 163–167 (2003)
L. Muscariello, M. Mellia, M. Meo, M. Ajmone Marsan, R. Lo Cigno, Markov models of internet traffic and a new hierarchical mmpp model. Comput. Commun. 28(16), 1835–1851 (2005)
B.B. Mandelbrot, J. Wallis, Computer experiments with fractional gaussian noises. Water Resour. Res. 5, 228–267 (1969)
A. Nogueira, P. Salvador, R. Valadas, A. Pacheco, Markovian Modelling of Internet Traffic, Network performance engineering (Springer, Berlin, 2011), pp. 98–124
R.G. Clegg, Markov-modulated on/off processes for long-range dependent internet traffic. CoRR abs/cs/0610135 (2006)
J. Beran, Statistics for long-memory processes, Monographs on statistics and applied probability (Chapman & Hall, London, 1994)
R. Clegg, A practical guide to measuring the hurst parameter. 21st UK Performance Engineering Workshop, School of Computing Science Technical Report Series, CSTR-916, University of Newcastle pp. 43–55 (2006)
J. Geweke, S. Porter-Hudak, The estimation and application of long memory time series models. J. Time Ser. Anal. 4, 221–238 (1983)
H. Kunsch, Statistical aspects of self-similar processes. in: Proceedings of 1st World Congress Bernoulli Soc., pp. 67–74. VNU Science Press (1987)
P. Robinson, Gaussian semiparametric estimation of long range dependence. Ann. Stat. 23, 1630–1661 (1995)
P. Abry, D. Veitch, Wavelet analysis of long-range-dependent traffic. IEEE Trans. Inf. Theor. 44(1), 2–15 (1998)
S. Maheshwari, S. Mahapatra, C. Kumar, K. Vasu, A joint parametric prediction model for wireless internet traffic using hidden markov model. Wirel. Netw. 19(6), 1171–1185 (2013)
P. Foremski, C. Callegari, M. Pagano, Waterfall: Rapid identification of ip flows using cascade classification, Computer Networks, Communications in Computer and Information Science (Springer, Switzerland, 2014), pp. 14–23
A. Erramilli, R. Singh, P. Pruthi, An application of deterministic chaotic maps to model packet traffic. Queueing Syst. 20(1–2), 171–206 (1995)
J.R. Gallardo, D. Makrakis, L. Orozco-Barbosa, Use of \(\alpha \)-stable self-similar stochastic processes for modeling traffic in broadband networks. Perform. Eval. 40(1–3), 71–98 (2000)
F.C. Harmantzis, D. Hatzinakos, Heavy network traffic modeling and simulation using stable farima processes. in: 19th International Teletraffic Congress, pp. 300–303. Beijing, China (2005)
N. Laskin, I. Lambadatis, F. Harmantzis, M. Devetsikiotis, Fractional levy motion and its application to network traffic modeling. Comput. Netw. 40(3), 363–375 (2002)
S. Robert, J.Y. Le Boudec, New models for pseudo self-similar traffic. Perform. Eval. 30(1–2), 57–68 (1997)
J. Domańska, A. Domański, T. Czachórski, The drop-from-front strategy in aqm. Lect. Notes Comput. Sc. 4712, 61–72 (2007)
J. Domańska, A. Domański, T. Czachórski, Internet traffic source based on hidden markov model. Lect. Notes Comput. Sc. 6869, 395–404 (2011)
J. Domańska, D. Augustyn, A. Domański, The choice of optimal 3-rd order polynomial packet dropping function for nlred in the presence of self-similar traffic. Bull. Pol. Ac.: Tech. 60(4), 779–786 (2012)
A.T. Andersen, B.F. Nielsen, A markovian approach for modeling packet traffic with long-range dependence. IEEE J. Sel. A. Commun. 16(5), 719–732 (2006)
G. Casale, Building accurate workload models using markovian arrival processes. SIGMETRICS Perform. Eval. Rev. 39(1), 357–358 (2011)
W. Fischer, K. Meier-Hellstern, The markov-modulated poisson process (mmpp) cookbook. Perform. Eval. 18(2), 149–171 (1993)
H. Okamura, Y. Kamahara, T. Dohi, Estimating markov-modulated compound poisson processes. In: Proceedings of the 2nd International Conference on Performance Evaluation Methodologies and Tools, ValueTools ’07, pp. 28:1–28:8 (2007)
J. Domańska, A. Domański, T. Czachórski, Modeling packet traffic with the use of superpositions of two-state mmpps, Computer Network, Communications in Computer and Information Science (Springer, Switzerland, 2014), pp. 24–36
C. Stolojescu, A. Isar, A comparison of some hurst parameter estimators. in: Proceedings of Optim, pp. 1152–1157 (2012)
Acknowledgments
This work was supported by Polish project NCN nr 4796/B/T02/2011/40 “Models for transmissions dynamics, congestion control and quality of service in Internet” and the European Union from the European Social Fund (grant agreement number: UDA-POKL.04.01.01-00-106/09).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Domańska, J., Domańska, A., Czachórski, T. (2014). A Few Investigations of Long-Range Dependence in Network Traffic. In: Czachórski, T., Gelenbe, E., Lent, R. (eds) Information Sciences and Systems 2014. Springer, Cham. https://doi.org/10.1007/978-3-319-09465-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-09465-6_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09464-9
Online ISBN: 978-3-319-09465-6
eBook Packages: Computer ScienceComputer Science (R0)