Nothing Special   »   [go: up one dir, main page]

Skip to main content

Simulated Neural Dynamics Produces Adaptive Stepping and Stable Transitions in a Robotic Leg

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8608))

Included in the following conference series:

  • 2930 Accesses

Abstract

Animals exhibit flexible and adaptive behavior. They can change between modes of locomotion or modify the details of a step to better suit their environment. Insects have massively distributed control architectures in which each joint has its own central pattern generator (CPG), which is coordinated with its neighbors only through sensory information. Different modes of walking (forward, turning, etc.) can be produced by changing which CPGs are affected by which sensory information, called a reflex reversal. The presented robotic leg is controlled by a computational neuroscience model of part of the nervous system of the cockroach Blaberus discoidalis. It steps adaptively to correct for unexpected obstacles and can reverse reflexes to produce turning motions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akay, T., Bässler, U., Gerharz, P., Büschges, A.: The role of sensory signals from the insect coxa-trochanteral joint in controlling motor activity of the femur-tibia joint. Journal of Neurophysiology 85(2), 594 (2001)

    Google Scholar 

  2. Akay, T., Büschges, A.: Load signals assist the generation of movement-dependent reflex reversal in the femur-tibia joint of stick insects. Journal of Neurophysiology 96(6), 3532–3537 (2006)

    Article  Google Scholar 

  3. Akay, T., Haehn, S., Schmitz, J., Büschges, A.: Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. Journal of Neurophysiology 92(1), 42–51 (2004)

    Article  Google Scholar 

  4. Akay, T., Ludwar, B.C., Göritz, M.L., Schmitz, J., Büschges, A.: Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system. The Journal of Neuroscience 27(12), 3285–3294 (2007)

    Google Scholar 

  5. Bender, J.A., Simpson, E.M., Ritzmann, R.E.: Computer-assisted 3D kinematic analysis of all leg joints in walking insects. PloS One 5(10) (2010)

    Google Scholar 

  6. Bucher, D., Akay, T., DiCaprio, R.A., Büschges, A.: Interjoint coordination in the stick insect leg-control system: the role of positional signaling. Journal of Neurophysiology 89(3), 1245–1255 (2003)

    Article  Google Scholar 

  7. Büschges, A., Kittmann, R., Schmitz, J.: Identified nonspiking interneurons in leg reflexes and during walking in the stick insect. Journal of Comparative Physiology A, 685–700 (1994)

    Google Scholar 

  8. Büschges, A., Schmitz, J., Bässler, U.: Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine. Journal of Experimental Biology 198(Pt. 2), 435–456 (1995)

    Google Scholar 

  9. Cofer, D., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W.J., Edwards, D.H.: AnimatLab: a 3D graphics environment for neuromechanical simulations. Journal of Neuroscience Methods 187(2), 280–288 (2010)

    Article  Google Scholar 

  10. Cruse, H.: What mechanisms coordinate leg movement in walking arthropods? Trends in Neurosciences 13, 15–21 (1990)

    Article  Google Scholar 

  11. Daun-Gruhn, S., Rubin, J.E., Rybak, I.A.: Control of oscillation periods and phase durations in half-center central pattern generators: a comparative mechanistic analysis. Journal of Computational Neuroscience 27(1), 3–36 (2009)

    Article  MathSciNet  Google Scholar 

  12. Daun-Gruhn, S., Tóth, T.I.: An inter-segmental network model and its use in elucidating gait-switches in the stick insect. Journal of Computational Neuroscience (2010), doi:10.1007/s10827-010-0300-1

    Google Scholar 

  13. Ekeberg, O., Blümel, M., Büschges, A.: Dynamic simulation of insect walking. Arthropod Structure & Development 33(3), 287–300 (2004)

    Article  Google Scholar 

  14. Hellekes, K., Blincow, E., Hoffmann, J., Büschges, A.: Control of reflex reversal in stick insect walking: effects of intersegmental signals, changes in direction and optomotor induced turning. Journal of Neurophysiology 107(1), 239–249 (2011)

    Article  Google Scholar 

  15. Hess, D., Büschges, A.: Role of Proprioceptive Signals From an Insect Femur-Tibia Joint in Patterning Motoneuronal Activity of an Adjacent Leg Joint. Journal of Neurophysiology 81(4), 1856–1865 (1999)

    Google Scholar 

  16. Lewinger, W.A., Rutter, B.L.: Sensory Coupled Action Switching Modules (SCASM) generate robust, adaptive stepping in legged robots. Climbing and Walking Robots (September 2006)

    Google Scholar 

  17. Markin, S.N., Klishko, A.N., Shevtsova, N.A., Lemay, M.A., Prilutsky, B.I., Rybak, I.A.: Afferent control of locomotor CPG: insights from a simple neuromechanical model. Annals of the New York Academy of Sciences 1198, 21–34 (2010)

    Article  Google Scholar 

  18. Mu, L., Ritzmann, R.E.: Kinematics and motor activity during tethered walking and turning in the cockroach, Blaberus discoidalis. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology 191(11), 1037–1054 (2005)

    Article  Google Scholar 

  19. Raibert, M.H.: Legged Robots That Balance. MIT Press (1986)

    Google Scholar 

  20. Rutter, B.L., Lewinger, W.A., Blümel, M., Büschges, A., Quinn, R.D.: Simple Muscle Models Regularize Motion in a Robotic Leg with Neurally-Based Step Generation. In: IEEE ICRA, pp. 10–14 (April 2007)

    Google Scholar 

  21. Rutter, B.L., Taylor, B.K., Bender, J.A., Blumel, M., Lewinger, W.A., Ritzmann, R.E., Quinn, R.D.: Descending commands to an insect leg controller network cause smooth behavioral transitions. In: Intelligent Robots and Systems (IROS 2011) (2011)

    Google Scholar 

  22. Spardy, L.E., Markin, S.N., Shevtsova, N.A., Prilutsky, B.I., Rybak, I.A., Rubin, J.E.: A dynamical systems analysis of afferent control in a neuromechanical model of locomotion: I. Rhythm generation. Journal of Neural Engineering 8(6), 065003 (2011)

    Google Scholar 

  23. Stein, W., Schmitz, J.: Multimodal convergence of presynaptic afferent inhibition in insect proprioceptors. Journal of Neurophysiology 82, 512–514 (1999)

    Google Scholar 

  24. Szczecinski, N.S., Brown, A.E., Bender, J.A., Quinn, R.D., Ritzmann, R.E.: A Neuromechanical Simulation of Insect Walking and Transition to Turning of the Cockroach Blaberus discoidalis. Biological Cybernetics (2013)

    Google Scholar 

  25. Watson, J.T., Ritzmann, R.E.: Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: I. Slow running. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology 182(1), 11–22 (1998)

    Article  Google Scholar 

  26. Zill, S.N., Büschges, A., Schmitz, J.: Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology 197(8), 851–867 (2011)

    Article  Google Scholar 

  27. Zill, S.N., Keller, B.R., Duke, E.R.: Sensory signals of unloading in one leg follow stance onset in another leg: transfer of load and emergent coordination in cockroach walking. Journal of Neurophysiology 101(5), 2297–2304 (2009)

    Article  Google Scholar 

  28. Zill, S.N., Schmitz, J., Büschges, A.: Load sensing and control of posture and locomotion. Arthropod Structure & Development 33(3), 273–286 (2004a)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Klein, M.A., Szczecinski, N.S., Ritzmann, R.E., Quinn, R.D. (2014). Simulated Neural Dynamics Produces Adaptive Stepping and Stable Transitions in a Robotic Leg. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2014. Lecture Notes in Computer Science(), vol 8608. Springer, Cham. https://doi.org/10.1007/978-3-319-09435-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09435-9_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09434-2

  • Online ISBN: 978-3-319-09435-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics