Abstract
Animals exhibit flexible and adaptive behavior. They can change between modes of locomotion or modify the details of a step to better suit their environment. Insects have massively distributed control architectures in which each joint has its own central pattern generator (CPG), which is coordinated with its neighbors only through sensory information. Different modes of walking (forward, turning, etc.) can be produced by changing which CPGs are affected by which sensory information, called a reflex reversal. The presented robotic leg is controlled by a computational neuroscience model of part of the nervous system of the cockroach Blaberus discoidalis. It steps adaptively to correct for unexpected obstacles and can reverse reflexes to produce turning motions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akay, T., Bässler, U., Gerharz, P., Büschges, A.: The role of sensory signals from the insect coxa-trochanteral joint in controlling motor activity of the femur-tibia joint. Journal of Neurophysiology 85(2), 594 (2001)
Akay, T., Büschges, A.: Load signals assist the generation of movement-dependent reflex reversal in the femur-tibia joint of stick insects. Journal of Neurophysiology 96(6), 3532–3537 (2006)
Akay, T., Haehn, S., Schmitz, J., Büschges, A.: Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. Journal of Neurophysiology 92(1), 42–51 (2004)
Akay, T., Ludwar, B.C., Göritz, M.L., Schmitz, J., Büschges, A.: Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system. The Journal of Neuroscience 27(12), 3285–3294 (2007)
Bender, J.A., Simpson, E.M., Ritzmann, R.E.: Computer-assisted 3D kinematic analysis of all leg joints in walking insects. PloS One 5(10) (2010)
Bucher, D., Akay, T., DiCaprio, R.A., Büschges, A.: Interjoint coordination in the stick insect leg-control system: the role of positional signaling. Journal of Neurophysiology 89(3), 1245–1255 (2003)
Büschges, A., Kittmann, R., Schmitz, J.: Identified nonspiking interneurons in leg reflexes and during walking in the stick insect. Journal of Comparative Physiology A, 685–700 (1994)
Büschges, A., Schmitz, J., Bässler, U.: Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine. Journal of Experimental Biology 198(Pt. 2), 435–456 (1995)
Cofer, D., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W.J., Edwards, D.H.: AnimatLab: a 3D graphics environment for neuromechanical simulations. Journal of Neuroscience Methods 187(2), 280–288 (2010)
Cruse, H.: What mechanisms coordinate leg movement in walking arthropods? Trends in Neurosciences 13, 15–21 (1990)
Daun-Gruhn, S., Rubin, J.E., Rybak, I.A.: Control of oscillation periods and phase durations in half-center central pattern generators: a comparative mechanistic analysis. Journal of Computational Neuroscience 27(1), 3–36 (2009)
Daun-Gruhn, S., Tóth, T.I.: An inter-segmental network model and its use in elucidating gait-switches in the stick insect. Journal of Computational Neuroscience (2010), doi:10.1007/s10827-010-0300-1
Ekeberg, O., Blümel, M., Büschges, A.: Dynamic simulation of insect walking. Arthropod Structure & Development 33(3), 287–300 (2004)
Hellekes, K., Blincow, E., Hoffmann, J., Büschges, A.: Control of reflex reversal in stick insect walking: effects of intersegmental signals, changes in direction and optomotor induced turning. Journal of Neurophysiology 107(1), 239–249 (2011)
Hess, D., Büschges, A.: Role of Proprioceptive Signals From an Insect Femur-Tibia Joint in Patterning Motoneuronal Activity of an Adjacent Leg Joint. Journal of Neurophysiology 81(4), 1856–1865 (1999)
Lewinger, W.A., Rutter, B.L.: Sensory Coupled Action Switching Modules (SCASM) generate robust, adaptive stepping in legged robots. Climbing and Walking Robots (September 2006)
Markin, S.N., Klishko, A.N., Shevtsova, N.A., Lemay, M.A., Prilutsky, B.I., Rybak, I.A.: Afferent control of locomotor CPG: insights from a simple neuromechanical model. Annals of the New York Academy of Sciences 1198, 21–34 (2010)
Mu, L., Ritzmann, R.E.: Kinematics and motor activity during tethered walking and turning in the cockroach, Blaberus discoidalis. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology 191(11), 1037–1054 (2005)
Raibert, M.H.: Legged Robots That Balance. MIT Press (1986)
Rutter, B.L., Lewinger, W.A., Blümel, M., Büschges, A., Quinn, R.D.: Simple Muscle Models Regularize Motion in a Robotic Leg with Neurally-Based Step Generation. In: IEEE ICRA, pp. 10–14 (April 2007)
Rutter, B.L., Taylor, B.K., Bender, J.A., Blumel, M., Lewinger, W.A., Ritzmann, R.E., Quinn, R.D.: Descending commands to an insect leg controller network cause smooth behavioral transitions. In: Intelligent Robots and Systems (IROS 2011) (2011)
Spardy, L.E., Markin, S.N., Shevtsova, N.A., Prilutsky, B.I., Rybak, I.A., Rubin, J.E.: A dynamical systems analysis of afferent control in a neuromechanical model of locomotion: I. Rhythm generation. Journal of Neural Engineering 8(6), 065003 (2011)
Stein, W., Schmitz, J.: Multimodal convergence of presynaptic afferent inhibition in insect proprioceptors. Journal of Neurophysiology 82, 512–514 (1999)
Szczecinski, N.S., Brown, A.E., Bender, J.A., Quinn, R.D., Ritzmann, R.E.: A Neuromechanical Simulation of Insect Walking and Transition to Turning of the Cockroach Blaberus discoidalis. Biological Cybernetics (2013)
Watson, J.T., Ritzmann, R.E.: Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: I. Slow running. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology 182(1), 11–22 (1998)
Zill, S.N., Büschges, A., Schmitz, J.: Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology 197(8), 851–867 (2011)
Zill, S.N., Keller, B.R., Duke, E.R.: Sensory signals of unloading in one leg follow stance onset in another leg: transfer of load and emergent coordination in cockroach walking. Journal of Neurophysiology 101(5), 2297–2304 (2009)
Zill, S.N., Schmitz, J., Büschges, A.: Load sensing and control of posture and locomotion. Arthropod Structure & Development 33(3), 273–286 (2004a)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Klein, M.A., Szczecinski, N.S., Ritzmann, R.E., Quinn, R.D. (2014). Simulated Neural Dynamics Produces Adaptive Stepping and Stable Transitions in a Robotic Leg. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2014. Lecture Notes in Computer Science(), vol 8608. Springer, Cham. https://doi.org/10.1007/978-3-319-09435-9_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-09435-9_15
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09434-2
Online ISBN: 978-3-319-09435-9
eBook Packages: Computer ScienceComputer Science (R0)