Abstract
The methods of searching optimal solutions are distinct in different evolutionary algorithms. Some of them do search by exploiting whereas others do by exploring the whole search space. For example Genetic Algorithm (GA) is good in exploitation whereas the Environmental Adaption Method (EAM) performs well in exploring the whole search space. Individually these algorithms have some limitations. In this paper a new hybrid algorithm has been proposed, which is created by combining the techniques of GA and EAM. The proposed algorithm attempts to remove the limitations of both GA and EAM and it is compared with some state-of-the-art algorithms like Particle Swarm Optimization-Time Variant Acceleration Coefficient (PSO-TVAC), Self-Adaptive Differential Evolution (SADE) and EAM on six benchmark functions with experimental results. It is found that the proposed hybrid algorithm gives better results than the existing algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Whitley, D.: A genetic algorithm tutorial. Statistics and Computing 4(2), 65–85 (1994)
Hutchinson, S., Hager, G., Corke, P.: An Introduction to Inertial and Visual Sensing. IEEE Transactions on Robotics and Automation 12(5), 12–22 (1996)
Chaumette, F., Hutchinson, S.: Visual Servo Control. Part I: Basic Approaches. IEEE Robotics & Automation Magazine 12 (2002)
Espiau, B., Chaumette, F., Fixot, N.: A new approach to visual servoing in robotic. IEEE Transactions on Robotics and Automation 8(3), 34–44 (1992)
Qiu, B., Ivanova, K., Yen, J., Liu, P.: Behavior evolution and event-driven growth dynamics in social networks. In: SocialCom, pp. 217–224 (2010)
Perra, N., Gongalves, B., Pastor-Satorras, R., Vespignani, A.: Activity driven modeling of time varying networks. Nature 2, 469 (2012)
Holme, P., Saramaki, J.: Temporal networks. Physics Reports 519(3), 97–125 (2012)
Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)
Yang, Z., Xue, J., Zhao, X., Wang, X., Zhao, B.Y., Dai, Y.: Unfolding dynamics in a social network: co-evolution of link formation and user interaction. In: WWW (2013)
Mahadevan, P., Krioukov, D., Fall, K., Vahdat, A.: Systematic topology analysis and generation using degree correlations. In: SIGCOMM (2006)
Barabasi, A.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)
Vazquez, A.: Growing network with local rules: Preferential attachment, clustering hierarchy, and degree correlations. Physical Review E (2003)
Sala, A., Cao, L., Wilson, C., Zablit, R., Zheng, H., Zhao, B.Y.: Measurement-calibrated graph models for social network experiments. In: WWW (2010)
Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of social networks. In: KDD, pp. 462–470 (2008)
Jin, E., Girvan, M., Newman, M.E.J.: Structure of growing social networks. Physical Review E 64, 046132 (2001)
Palla, G., Barabasi, A.L., Vicsek, T.: Quantifying social group evolution. Nature 446, 664–667 (2007)
Fabbri, R., da Silva Jr., V.V., Fabbri, R., Antunes, D., Pisani, M., Costa, L.: On the evolution of interaction networks: primitive typology of vertex and prominence of measures. arXiv:1310.7769 (2013)
Wang, X., Zhai, C., Hu, X., Sproat, R.: Mining correlated bursty topic patterns from correlated text stream. In: KDD (2007)
Choudhury, M.D., Sundaram, H., John, A., Seligmann, D.D.: Social synchrony: predicting mimicry of user actions in online social media. In: SocialCom (2009)
Banos, R.A., Borge-Holthoefer, J., Moreno, Y.: The role of hidden influentials in the diffusion of online information cascades. EPJ Data Science (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Tripathi, A., Kumar, D., Mishra, K.K., Misra, A.K. (2014). GA-EAM Based Hybrid Algorithm. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theory. ICIC 2014. Lecture Notes in Computer Science, vol 8588. Springer, Cham. https://doi.org/10.1007/978-3-319-09333-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-09333-8_2
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09332-1
Online ISBN: 978-3-319-09333-8
eBook Packages: Computer ScienceComputer Science (R0)