Nothing Special   »   [go: up one dir, main page]

Skip to main content

GA-EAM Based Hybrid Algorithm

  • Conference paper
Intelligent Computing Theory (ICIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8588))

Included in the following conference series:

Abstract

The methods of searching optimal solutions are distinct in different evolutionary algorithms. Some of them do search by exploiting whereas others do by exploring the whole search space. For example Genetic Algorithm (GA) is good in exploitation whereas the Environmental Adaption Method (EAM) performs well in exploring the whole search space. Individually these algorithms have some limitations. In this paper a new hybrid algorithm has been proposed, which is created by combining the techniques of GA and EAM. The proposed algorithm attempts to remove the limitations of both GA and EAM and it is compared with some state-of-the-art algorithms like Particle Swarm Optimization-Time Variant Acceleration Coefficient (PSO-TVAC), Self-Adaptive Differential Evolution (SADE) and EAM on six benchmark functions with experimental results. It is found that the proposed hybrid algorithm gives better results than the existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Whitley, D.: A genetic algorithm tutorial. Statistics and Computing 4(2), 65–85 (1994)

    Article  Google Scholar 

  2. Hutchinson, S., Hager, G., Corke, P.: An Introduction to Inertial and Visual Sensing. IEEE Transactions on Robotics and Automation 12(5), 12–22 (1996)

    Article  Google Scholar 

  3. Chaumette, F., Hutchinson, S.: Visual Servo Control. Part I: Basic Approaches. IEEE Robotics & Automation Magazine 12 (2002)

    Google Scholar 

  4. Espiau, B., Chaumette, F., Fixot, N.: A new approach to visual servoing in robotic. IEEE Transactions on Robotics and Automation 8(3), 34–44 (1992)

    Article  Google Scholar 

  5. Qiu, B., Ivanova, K., Yen, J., Liu, P.: Behavior evolution and event-driven growth dynamics in social networks. In: SocialCom, pp. 217–224 (2010)

    Google Scholar 

  6. Perra, N., Gongalves, B., Pastor-Satorras, R., Vespignani, A.: Activity driven modeling of time varying networks. Nature 2, 469 (2012)

    Google Scholar 

  7. Holme, P., Saramaki, J.: Temporal networks. Physics Reports 519(3), 97–125 (2012)

    Article  Google Scholar 

  8. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Yang, Z., Xue, J., Zhao, X., Wang, X., Zhao, B.Y., Dai, Y.: Unfolding dynamics in a social network: co-evolution of link formation and user interaction. In: WWW (2013)

    Google Scholar 

  10. Mahadevan, P., Krioukov, D., Fall, K., Vahdat, A.: Systematic topology analysis and generation using degree correlations. In: SIGCOMM (2006)

    Google Scholar 

  11. Barabasi, A.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  12. Vazquez, A.: Growing network with local rules: Preferential attachment, clustering hierarchy, and degree correlations. Physical Review E (2003)

    Google Scholar 

  13. Sala, A., Cao, L., Wilson, C., Zablit, R., Zheng, H., Zhao, B.Y.: Measurement-calibrated graph models for social network experiments. In: WWW (2010)

    Google Scholar 

  14. Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of social networks. In: KDD, pp. 462–470 (2008)

    Google Scholar 

  15. Jin, E., Girvan, M., Newman, M.E.J.: Structure of growing social networks. Physical Review E 64, 046132 (2001)

    Google Scholar 

  16. Palla, G., Barabasi, A.L., Vicsek, T.: Quantifying social group evolution. Nature 446, 664–667 (2007)

    Article  Google Scholar 

  17. Fabbri, R., da Silva Jr., V.V., Fabbri, R., Antunes, D., Pisani, M., Costa, L.: On the evolution of interaction networks: primitive typology of vertex and prominence of measures. arXiv:1310.7769 (2013)

    Google Scholar 

  18. Wang, X., Zhai, C., Hu, X., Sproat, R.: Mining correlated bursty topic patterns from correlated text stream. In: KDD (2007)

    Google Scholar 

  19. Choudhury, M.D., Sundaram, H., John, A., Seligmann, D.D.: Social synchrony: predicting mimicry of user actions in online social media. In: SocialCom (2009)

    Google Scholar 

  20. Banos, R.A., Borge-Holthoefer, J., Moreno, Y.: The role of hidden influentials in the diffusion of online information cascades. EPJ Data Science (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Tripathi, A., Kumar, D., Mishra, K.K., Misra, A.K. (2014). GA-EAM Based Hybrid Algorithm. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theory. ICIC 2014. Lecture Notes in Computer Science, vol 8588. Springer, Cham. https://doi.org/10.1007/978-3-319-09333-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09333-8_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09332-1

  • Online ISBN: 978-3-319-09333-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics