Abstract
In this paper, a nonparametric discirminant multi-manifold learning (NDML) method is presented for dimensionality reduction. Based on the assumption that the data with same label locate on the same manifold and those belonging to varied classes are resided on the corresponding manifolds, the traditional classification problem can be deduced to multi-manifold identification in low dimensional space. So this paper presents a discriminant learning algorithm to distinguish different manifolds, where a novel nonparametric manifold-to-manifold distance is defined. Moreover, an optimization function is modeled to explore a subspace with maximum manifold-to-manifold distances and minimum locality preserving. Experiments on AR face data and YaleB face data validate that NDML is of better performance than some other dimensionality reduction methods, such as Unsupervised Discriminant Projection (UDP), Constrained Maximum Variance Mapping (CMVM) and Linear Discriminant Analysis (LDA).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)
Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290, 2323–2326 (2000)
Saul, L.K., Roweis, S.T.: Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds. J. Mach. Learning Res. 4, 119–155 (2003)
Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Comput. 15(6), 1373–1396 (2003)
Zhang, Z., Zha, H.: Principal Manifolds and Nonlinear Dimensionality Reduction by Local Tangent Space Alignment. SIAM Journal of Scientific Computing 26(1), 313–338 (2004)
Weinberger, K.Q., Saul, L.K.: Unsupervised Learning of Image Manifolds by Semi-definite Programming. International Journal of Computer Vision 70(1), 77–90 (2006)
Bengio, Y., Paiement, J., Vincent, P.: Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering. Technical Report 123, Univ. de Montreal (2003)
Brand, M.: Charting a Manifold. In: Proc. 15th Conf. Neural Information Processing Systems (2002)
Yan, S., Xu, D., Zhang, B., Zhang, H.J.: Graph Embedding: A General Framework for Dimensionality Reduction. IEEE Trans. Pattern Analysis and Machine Intelligence 29(1), 40–51 (2007)
Yang, J., Zhang, D., Yang, J.Y., Niu, B.: Globally Maximizing, Locally Minimizing: Unsupervised Discriminant Projection with Application to Face and Palm Biometrics. IEEE Trans. Pattern Analysis and Machine Intelligence 29(4), 650–664 (2007)
Zhao, Q., Zhang, D., Lu, H.: Supervised LLE in ICA Space for Facial Expression Recognition. In: ICNNB, pp. 1970–1975 (2005)
Han, P.Y., Beng, A.T.J., Kiong, W.E.: Neighborhood Discriminant Locally Linear Embedding in Face Recognition. In: CGIV 2008, pp. 223–228 (2008)
Zhang, Z., Zhao, L.: Probability-based Locally Linear Embedding for Classification. In: FSKD, pp. 243–247 (2007)
Zhao, L., Zhang, Z.: Supervised Locally Llinear Embedding with Probability-based Distance for Classification. Computation Mathematics Application 7(6), 919–926 (2009)
Zhang, J., Shen, H., Zhou, Z.-H.: Unified Locally Linear Embedding and Linear Discriminant Analysis Algorithm (ULLELDA) for Face Recognition. In: Li, S.Z., Lai, J.-H., Tan, T., Feng, G.-C., Wang, Y. (eds.) SINOBIOMETRICS 2004. LNCS, vol. 3338, pp. 296–304. Springer, Heidelberg (2004)
Zhang, J., He, L., Zhou, Z.-H.: Ensemble-Based Discriminant Manifold Learning for Face Recognition. In: Jiao, L., Wang, L., Gao, X.-B., Liu, J., Wu, F. (eds.) ICNC 2006. LNCS, vol. 4221, pp. 29–38. Springer, Heidelberg (2006)
Ridder, D., de Loog, M., Reinders, M.J.T.: Local Fisher embedding. In: the 17th International Conference on Pattern Recognition, vol. 2, pp. 295–298 (2004)
Li, B., Zheng, C., Huang, D.S.: Locally linear Discriminant Embedding: An Efficient Method for Face Recognition. Pattern Recognition 41(12), 3813–3821 (2008)
Li, B., Huang, D.S., Wang, C., Liu, K.H.: Feature Extraction Using Constrained Maximum Variance Mapping. Pattern Recognition 41(11), 3287–3294 (2008)
Kim, T.K., Stenger, B., Kittler, J., Cipolla, R.: Incremental Linear Discriminant Analysis Using Sufficient Spanning Sets and Its Applications. International Journal of Computer Vision 91(2), 216–232 (2011)
Wang, R., Shan, S., Chen, X., Gao, W.: Manifold-manifold Distance with Application to Face Recognition based on Image Set. In: CVPR 2008, pp. 2940–2947 (2008)
The AR Face Database, http://rvl1.ecn.purdue.edu/aleix/~aleix_face_DB.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Li, B., Li, J., Zhang, XP. (2014). Nonparametric Discriminant Multi-manifold Learning. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theory. ICIC 2014. Lecture Notes in Computer Science, vol 8588. Springer, Cham. https://doi.org/10.1007/978-3-319-09333-8_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-09333-8_13
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09332-1
Online ISBN: 978-3-319-09333-8
eBook Packages: Computer ScienceComputer Science (R0)