Nothing Special   »   [go: up one dir, main page]

Skip to main content

Nonparametric Discriminant Multi-manifold Learning

  • Conference paper
Intelligent Computing Theory (ICIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8588))

Included in the following conference series:

Abstract

In this paper, a nonparametric discirminant multi-manifold learning (NDML) method is presented for dimensionality reduction. Based on the assumption that the data with same label locate on the same manifold and those belonging to varied classes are resided on the corresponding manifolds, the traditional classification problem can be deduced to multi-manifold identification in low dimensional space. So this paper presents a discriminant learning algorithm to distinguish different manifolds, where a novel nonparametric manifold-to-manifold distance is defined. Moreover, an optimization function is modeled to explore a subspace with maximum manifold-to-manifold distances and minimum locality preserving. Experiments on AR face data and YaleB face data validate that NDML is of better performance than some other dimensionality reduction methods, such as Unsupervised Discriminant Projection (UDP), Constrained Maximum Variance Mapping (CMVM) and Linear Discriminant Analysis (LDA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  2. Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  3. Saul, L.K., Roweis, S.T.: Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds. J. Mach. Learning Res. 4, 119–155 (2003)

    MathSciNet  Google Scholar 

  4. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  5. Zhang, Z., Zha, H.: Principal Manifolds and Nonlinear Dimensionality Reduction by Local Tangent Space Alignment. SIAM Journal of Scientific Computing 26(1), 313–338 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Weinberger, K.Q., Saul, L.K.: Unsupervised Learning of Image Manifolds by Semi-definite Programming. International Journal of Computer Vision 70(1), 77–90 (2006)

    Article  Google Scholar 

  7. Bengio, Y., Paiement, J., Vincent, P.: Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering. Technical Report 123, Univ. de Montreal (2003)

    Google Scholar 

  8. Brand, M.: Charting a Manifold. In: Proc. 15th Conf. Neural Information Processing Systems (2002)

    Google Scholar 

  9. Yan, S., Xu, D., Zhang, B., Zhang, H.J.: Graph Embedding: A General Framework for Dimensionality Reduction. IEEE Trans. Pattern Analysis and Machine Intelligence 29(1), 40–51 (2007)

    Article  MathSciNet  Google Scholar 

  10. Yang, J., Zhang, D., Yang, J.Y., Niu, B.: Globally Maximizing, Locally Minimizing: Unsupervised Discriminant Projection with Application to Face and Palm Biometrics. IEEE Trans. Pattern Analysis and Machine Intelligence 29(4), 650–664 (2007)

    Article  Google Scholar 

  11. Zhao, Q., Zhang, D., Lu, H.: Supervised LLE in ICA Space for Facial Expression Recognition. In: ICNNB, pp. 1970–1975 (2005)

    Google Scholar 

  12. Han, P.Y., Beng, A.T.J., Kiong, W.E.: Neighborhood Discriminant Locally Linear Embedding in Face Recognition. In: CGIV 2008, pp. 223–228 (2008)

    Google Scholar 

  13. Zhang, Z., Zhao, L.: Probability-based Locally Linear Embedding for Classification. In: FSKD, pp. 243–247 (2007)

    Google Scholar 

  14. Zhao, L., Zhang, Z.: Supervised Locally Llinear Embedding with Probability-based Distance for Classification. Computation Mathematics Application 7(6), 919–926 (2009)

    Article  Google Scholar 

  15. Zhang, J., Shen, H., Zhou, Z.-H.: Unified Locally Linear Embedding and Linear Discriminant Analysis Algorithm (ULLELDA) for Face Recognition. In: Li, S.Z., Lai, J.-H., Tan, T., Feng, G.-C., Wang, Y. (eds.) SINOBIOMETRICS 2004. LNCS, vol. 3338, pp. 296–304. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Zhang, J., He, L., Zhou, Z.-H.: Ensemble-Based Discriminant Manifold Learning for Face Recognition. In: Jiao, L., Wang, L., Gao, X.-B., Liu, J., Wu, F. (eds.) ICNC 2006. LNCS, vol. 4221, pp. 29–38. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Ridder, D., de Loog, M., Reinders, M.J.T.: Local Fisher embedding. In: the 17th International Conference on Pattern Recognition, vol. 2, pp. 295–298 (2004)

    Google Scholar 

  18. Li, B., Zheng, C., Huang, D.S.: Locally linear Discriminant Embedding: An Efficient Method for Face Recognition. Pattern Recognition 41(12), 3813–3821 (2008)

    Article  MATH  Google Scholar 

  19. Li, B., Huang, D.S., Wang, C., Liu, K.H.: Feature Extraction Using Constrained Maximum Variance Mapping. Pattern Recognition 41(11), 3287–3294 (2008)

    Article  MATH  Google Scholar 

  20. Kim, T.K., Stenger, B., Kittler, J., Cipolla, R.: Incremental Linear Discriminant Analysis Using Sufficient Spanning Sets and Its Applications. International Journal of Computer Vision 91(2), 216–232 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wang, R., Shan, S., Chen, X., Gao, W.: Manifold-manifold Distance with Application to Face Recognition based on Image Set. In: CVPR 2008, pp. 2940–2947 (2008)

    Google Scholar 

  22. The AR Face Database, http://rvl1.ecn.purdue.edu/aleix/~aleix_face_DB.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, B., Li, J., Zhang, XP. (2014). Nonparametric Discriminant Multi-manifold Learning. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theory. ICIC 2014. Lecture Notes in Computer Science, vol 8588. Springer, Cham. https://doi.org/10.1007/978-3-319-09333-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09333-8_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09332-1

  • Online ISBN: 978-3-319-09333-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics