Nothing Special   »   [go: up one dir, main page]

Skip to main content

ADHD-200 Classification Based on Social Network Method

  • Conference paper
Intelligent Computing in Bioinformatics (ICIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8590))

Included in the following conference series:

Abstract

Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common diseases in school aged children. In this study, we proposed a method based on social network to extract the features of the ADHD-200 resting state fMRI data between ADHD conditioned and control subjects. And the classification is done by using the support vector machine. The innovation of this paper lies in that: firstly, in the social network, the edge is defined by correlation between two voxels, where the threshold is proposed based on the optimal properties of small world; secondly, in the procedure of feature extraction, besides the traditional network features, we also exploit the new features such as assortative mixing and synchronization. We obtain an average accuracy of 63.75%, which is better than the average best imaging-based diagnostic performance 61.54% achieved in the ADHD-200 global competition. Compared with the proposed method, the result of the method based on traditional features is 61.04% , which verified that the proposed method based on new features is better than traditional one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Biederman, J., Mick, E., Faraone, S.V.: Age-dependent decline of symptoms of attention deficit hyperactivity disorder: impact of remission definition and symptom type. American Journal of Psychiatry 157(5), 816–818 (2000)

    Article  Google Scholar 

  2. Biswal, B., Zerrin Yetkin, F., Haughton, V.M., Hyde, J.S.: Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magnetic Resonance in Medicine 34(4), 537–541 (1995)

    Article  Google Scholar 

  3. Cordes, D., Haughton, V.M., Arfanakis, K., Wendt, G.J., Turski, P.A., Moritz, C.H., Meyerand, M.E.: Mapping functionally related regions of brain with functional connectivity MR imaging. American Journal of Neuroradiology 21(9), 1636–1644 (2000)

    Google Scholar 

  4. Castellanos, F.X., Margulies, D.S., Kelly, C., Uddin, L.Q., Ghaffari, M., Kirsch, A., Milham, M.P.: Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biological Psychiatry 63(3), 332–337 (2008)

    Article  Google Scholar 

  5. Achard, S., Bullmore, E.: Efficiency and cost of economical brain functional networks. PLoS Computational Biology 3(2), e17 (2007)

    Google Scholar 

  6. Stam, C.J., Reijneveld, J.C.: Graph theoretical analysis of complex networks in the brain. Nonlinear Biomedical Physics 1(1), 3 (2007)

    Article  Google Scholar 

  7. Ponten, S.C., Bartolomei, F., Stam, C.J.: Small-world networks and epilepsy: Graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clinical Neurophysiology 118(4), 918–927 (2007)

    Article  Google Scholar 

  8. Micheloyannis, S., Pachou, E., Stam, C.J., Breakspear, M., Bitsios, P., Vourkas, M., Zervakis, M.: Small-world networks and disturbed functional connectivity in schizophrenia. Schizophrenia Research 87(1), 60–66 (2006)

    Article  Google Scholar 

  9. Shinkareva, S.V., Ombao, H.C., Sutton, B.P., Mohanty, A., Miller, G.A.: Classification of functional brain images with a spatio-temporal dissimilarity map. NeuroImage 33(1), 63–71 (2006)

    Article  Google Scholar 

  10. Matthews, P.M., Jezzard, P.: Functional magnetic resonance imaging. Journal of Neurology, Neurosurgery & Psychiatry 75(1), 6–12 (2004)

    Google Scholar 

  11. Brauer, J., Anwander, A., Friederici, A.D.: Neuroanatomical prerequisites for language functions in the maturing brain. Cerebral Cortex 21(2), 459–466 (2011)

    Article  Google Scholar 

  12. Sabater, J., Sierra, C.: Reputation and social network analysis in multi-agent systems. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: part 1, pp. 475–482. ACM (2002)

    Google Scholar 

  13. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 289–300 (1995)

    Google Scholar 

  14. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world§ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  15. Montoya, J.M., Sole, R.V.: Small world patterns in food webs. Journal of Theoretical Biology 214(3), 405–412 (2002)

    Article  Google Scholar 

  16. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Physical Review Letters 87(19), 198–701 (2001)

    Article  Google Scholar 

  17. Newman, M.E.: The structure and function of complex networks. SIAM Review 45(2), 167–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science 296(5569), 910–913 (2002)

    Article  Google Scholar 

  19. Humphries, M.D., Gurney, K., Prescott, T.J.: The brainstem reticular formation is a small-world, not scale-free, network. Proceedings of the Royal Society B: Biological Sciences 273(1585), 503–511 (2006)

    Article  Google Scholar 

  20. Newman, M.E., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Physical Review E 64(2), 026118 (2001)

    Google Scholar 

  21. Newman, M.E.: Assortative mixing in networks. Physical Review Letters 89(20), 208701 (2002)

    Article  Google Scholar 

  22. Jespersen, S., Sokolov, I.M., Blumen, A.: Small-world Rouse networks as models of cross-linked polymers. The Journal of Chemical Physics 113(17), 7652–7655 (2000)

    Article  Google Scholar 

  23. Gerdes, S., Scholle, M.D., Campbell, J.W., Balazsi, G., Ravasz, E., Daugherty, M.D., Osterman, A.L.: Experimental determination and system level analysis of Essential genes in Escherichia coli MG1655. Journal of Bacteriology 185(19), 5673–5684 (2003)

    Article  Google Scholar 

  24. ADHD-200 global competition (2011), http://fcon1000.projects.nitrc.org/indi/adhd200

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Guo, X., An, X., Kuang, D., Zhao, Y., He, L. (2014). ADHD-200 Classification Based on Social Network Method. In: Huang, DS., Han, K., Gromiha, M. (eds) Intelligent Computing in Bioinformatics. ICIC 2014. Lecture Notes in Computer Science(), vol 8590. Springer, Cham. https://doi.org/10.1007/978-3-319-09330-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09330-7_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09329-1

  • Online ISBN: 978-3-319-09330-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics