Abstract
In this paper, a genetic programming(GP) based new ensemble system is proposed, named as GPES. Decision tree is used as base classifier, and fused by GP with three voting methods: min, max and average. In this way, each individual of GP acts as an ensemble system. When the evolution process of GP ends, the final ensemble committee is selected from the last generation by a forward search algorithm. GPES is evaluated on microarray datasets, and results show that this ensemble system is competitive compared with other ensemble systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Geman, S., Bienenstock, E., Doursat, R.: Neural Networks And the Bias/Variance Di-lemma. Neural Computation 4(1), 1–58 (1992)
Krogh, A., Vedelsby, J.: Neural Network Ensembles, Cross Validation, And Active Learning. In: Advances in Neural Information Processing Systems, pp. 231–238. MIT Press (1995)
Kuncheva, L.I., Whitaker, C.J.: Measures of Diversity in Classifier Ensembles and Their Rela-tionship with the Ensemble Accuracy. Machine Learning 51(2), 181–207 (2003)
Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996)
Freund, Y., Schapire, R.: A Desicion-theoretic Generalization of On-line Learning And An Application to Boosting. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995)
Ho, T.K.: Random Decision Forests. In: Proceedings of the Third International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282 (1995)
Bay, S.D.: Combining Nearest Neighbor Classifiers through Multiple Feature Subsets. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 37–45 (1998)
Ho, T.K.: The Random Subspace Method for Constructing Decision Forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)
Maclin, R., Shavlik, J.W., et al.: Combining the Predictions of Multiple Classifiers: Using Competitive learning to initialize neural networks. In: International Joint Conference on Artificial Intelligence, pp. 524–531. Lawrence Erlbaum Associates Ltd. (1995)
Langdon, W.B., Buxton, B.F.: Genetic programming for mining DNA chip data from cancer patients. Genetic Programming and Evolvable Machines 5(3), 251–257 (2004)
Yu, J., Yu, J., Almal, A.A., Dhanasekaran, S.M., Ghosh, D., Worzel, W.P., Chinnaiyan, A.M.: Feature Selection and Molecular Classification of Cancer Using Genetic Programming. Neoplasia 9(4), 292 (2007)
Liu, K., Xu, C.: A Genetic Programming-based Approach to the Classification of Multiclass Microarray datasets. Bioinformatics 25(3), 331–337 (2009)
Breiman, L.: Heuristics of Instability and Stabilization in Model Selection. The Annals of Statistics 24(6), 2350–2383 (1996)
Kuncheva, L.I.: A Theoretical Study on Six Cassifier Fusion Strategies. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(2), 281–286 (2002)
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)
Sun, Y.: Iterative RELIEF for Feature Weighting: Algorithms, Theories, and Applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6), 1035–1051 (2007)
Albanese, D., Visintainer, R., Merler, S., Riccadonna, S., Jurman, G., Furlanello, C.: mlpy: Machine Learning Python. Tech. rep. (2012)
Perone, C.S.: Pyevolve: a Python Open-source Framework for Genetic Algorithms. SIGEVOlution 4(1), 12–20 (2009)
Petricoin III, E.F., Ardekani, A.M., Hitt, B.A., Levine, P.J., Fusaro, V.A., Steinberg, S.M., Mills, G.B., Simone, C., Fishman, D.A., Kohn, E.C., Liotta, L.A.: Use of Proteomic Patterns in Serum to identify ovarian cancer. The Lancet 359(9306), 572–577 (2002)
Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H., Loh, M., Downing, J., Caligiuri, M., Bloomfield, C.D., Lander, E.S.: Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science 286(5439), 531–537 (1999)
Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences 96(12), 6745–6750 (1999)
Gordon, G.J., Jensen, R.V., Hsiao, L.-L., Gullans, S.R., Blumenstock, J.E., Ramaswamy, S., Richards, W.G., Sugarbaker, D.J., Bueno, R.: Translation of Microarray Data into Clinically Relevant Cancer Diagnostic Tests Using Gene Expression Ratios in Lung Cancer and Mesothelioma. Cancer Research 62(17), 4963–4967 (2002)
Singh, D., Febbo, P.G., Ross, K., Jackson, D.G., Manola, J., Ladd, C., Tamayo, P., Renshaw, A.A., D’Amico, A.V., Richie, J.P., Lander, E.S., Loda, M., Kantoff, P.W., Golub, T.R., Sellers, W.R.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2), 203–209 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Liu, K., Tong, M., Xie, S., Zeng, Z. (2014). Fusing Decision Trees Based on Genetic Programming for Classification of Microarray Datasets. In: Huang, DS., Jo, KH., Wang, L. (eds) Intelligent Computing Methodologies. ICIC 2014. Lecture Notes in Computer Science(), vol 8589. Springer, Cham. https://doi.org/10.1007/978-3-319-09339-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-09339-0_13
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09338-3
Online ISBN: 978-3-319-09339-0
eBook Packages: Computer ScienceComputer Science (R0)