Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Video Tensor Self-descriptor Based on Block Matching

  • Conference paper
Computational Science and Its Applications – ICCSA 2014 (ICCSA 2014)

Abstract

In this paper, we propose a new motion descriptor which uses only block matching vectors. This is a different and simple approach considering that most works on the field are based on the gradient of image intensities. The block matching method returns displacements vectors as a motion information. Our method computes this information to obtain orientation tensors and to generate the final descriptor. It is considered a self-descriptor, since it depends only on the input video. The global tensor descriptor is evaluated by a classification of KTH, UCF11 and Hollywood2 video datasets with a non-linear SVM classifier. Our results indicate that the method runs fast and has fairly competitive results compared to similar approaches. It is suitable when the time response is a major application issue. It also generates compact descriptors which are desirable to describe large datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hafiane, A., Palaniappan, K., Seetharaman, G.: Uav-video registration using block-based features. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), vol. 2, pp. 1104–1107 (2008)

    Google Scholar 

  2. Amel, A.M., Abdessalem, B.A., Abdellatif, M.: Video shot boundary detection using motion activity descriptor. Journal of Telecommunications 2(1), 54–59 (2010)

    Google Scholar 

  3. Sun, X., Divakaran, A., Manjunath, B.S.: A motion activity descriptor and its extraction in compressed domain. In: Shum, H.-Y., Liao, M., Chang, S.-F. (eds.) PCM 2001. LNCS, vol. 2195, pp. 450–457. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Mota, V.F., Souza, J.I., de A. Araújo, A., Vieira, M.B.: Combining orientation tensors for human action recognition. In: Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 328–333. IEEE (2013)

    Google Scholar 

  5. Sad, D., Mota, V.F., Maciel, L.M., Vieira, M.B., de A. Araújo, A.: A tensor motion descriptor based on multiple gradient estimators. In: Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 70–74. IEEE (2013)

    Google Scholar 

  6. Perez, E.A., Mota, V.F., Maciel, L.M., Sad, D., Vieira, M.B.: Combining gradient histograms using orientation tensors for human action recognition. In: 21st International Conference on Pattern Recognition (ICPR), pp. 3460–3463. IEEE (2012)

    Google Scholar 

  7. Ji, Y., Shimada, A., Taniguchi, R.I.: A compact 3d descriptor in roi for human action recognition. In: IEEE TENCON, pp. 454–459 (2010)

    Google Scholar 

  8. Mota, V.F., Perez, E.A., Vieira, M.B., Maciel, L., Precioso, F., Gosselin, P.H.: A tensor based on optical flow for global description of motion in videos. In: Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 298–301. IEEE (2012)

    Google Scholar 

  9. Kläser, A., Marszałek, M., Schmid, C.: A spatio-temporal descriptor based on 3d-gradients. In: British Machine Vision Conference (BMVC), pp. 995–1004 (September 2008)

    Google Scholar 

  10. Mota, V.F., Perez, E.A., Maciel, L.M., Vieira, M.B., Gosselin, P.H.: A tensor motion descriptor based on histograms of gradients and optical flow. Pattern Recognition Letters 31, 85–91 (2013)

    Google Scholar 

  11. Po, L.M., Ma, W.C.: A novel four-step search algorithm for fast block motion estimation. IEEE Transactions on Circuits and Systems for Video Technology 6(3), 313–317 (1996)

    Article  Google Scholar 

  12. Nie, Y., Ma, K.K.: Adaptive rood pattern search for fast block-matching motion estimation. IEEE Transactions on Image Processing 11(12), 1442–1449 (2002)

    Article  Google Scholar 

  13. Zhu, S., Ma, K.K.: A new diamond search algorithm for fast block-matching motion estimation. IEEE Transactions on Image Processing 9(2), 287–290 (2000)

    Article  MathSciNet  Google Scholar 

  14. Johansson, B., Farnebäck, G.: A theoretical comparison of different orientation tensors. In: Proceedings of the SSAB Symposium on Image Analysis, pp. 69–73 (2002)

    Google Scholar 

  15. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local svm approach. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR), vol. 3, pp. 32–36. IEEE (2004)

    Google Scholar 

  16. Liu, J., Luo, J., Shah, M.: Recognizing realistic actions from “videos in the wild”. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1996–2003. IEEE (2009)

    Google Scholar 

  17. Marszalek, M., Laptev, I., Schmid, C.: Actions in context. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2929–2936. IEEE (2009)

    Google Scholar 

  18. Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Dense trajectories and motion boundary descriptors for action recognition. International Journal of Computer Vision 103(1), 60–79 (2013)

    Article  MathSciNet  Google Scholar 

  19. Wang, H., Schmid, C., et al.: Action recognition with improved trajectories. In: International Conference on Computer Vision (2013)

    Google Scholar 

  20. Torralba, A., Fergus, R., Weiss, Y.: Small codes and large image databases for recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Figueiredo, A.M.O., Maia, H.A., Oliveira, F.L.M., Mota, V.F., Vieira, M.B. (2014). A Video Tensor Self-descriptor Based on Block Matching. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8584. Springer, Cham. https://doi.org/10.1007/978-3-319-09153-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09153-2_30

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09152-5

  • Online ISBN: 978-3-319-09153-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics