Nothing Special   »   [go: up one dir, main page]

Skip to main content

All-Path Reachability Logic

  • Conference paper
Rewriting and Typed Lambda Calculi (RTA 2014, TLCA 2014)

Abstract

This paper presents a language-independent proof system for reachability properties of programs written in non-deterministic (e.g. concurrent) languages, referred to as all-path reachability logic. It derives partial-correctness properties with all-path semantics (a state satisfying a given precondition reaches states satisfying a given postcondition on all terminating execution paths). The proof system takes as axioms any unconditional operational semantics, and is sound (partially correct) and (relatively) complete, independent of the object language; the soundness has also been mechanized (Coq). This approach is implemented in a tool for semantics-based verification as part of the \(\mathbb K\) framework.

Full version of this paper, with proofs, available at  http://hdl.handle.net/2142/46296

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nipkow, T.: Winskel is (almost) right: Towards a mechanized semantics textbook. Formal Aspects of Computing 10, 171–186 (1998)

    Google Scholar 

  2. Jacobs, B.: Weakest pre-condition reasoning for Java programs with JML annotations. J. Logic and Algebraic Programming 58(1-2), 61–88 (2004)

    Article  MATH  Google Scholar 

  3. Appel, A.W.: Verified software toolchain. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 1–17. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Roşu, G., Ştefănescu, A.: Checking reachability using matching logic. In: OOPSLA, pp. 555–574. ACM (2012)

    Google Scholar 

  5. Roşu, G., Ştefănescu, A.: From hoare logic to matching logic reachability. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 387–402. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Roşu, G., Ştefănescu, A.: Towards a unified theory of operational and axiomatic semantics. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 351–363. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Roşu, G., Ştefănescu, A., Ciobâcă, C., Moore, B.M.: One-path reachability logic. In: LICS 2013. IEEE (2013)

    Google Scholar 

  8. Roşu, G., Ellison, C., Schulte, W.: Matching logic: An alternative to hoare/Floyd logic. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486, pp. 142–162. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Roşu, G., Şerbănută, T.F.: An overview of the K semantic framework. J. Logic and Algebraic Programming 79(6), 397–434 (2010)

    Google Scholar 

  10. Ellison, C., Roşu, G.: An executable formal semantics of C with applications. In: POPL, pp. 533–544. ACM (2012)

    Google Scholar 

  11. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex. MIT (2009)

    Google Scholar 

  12. Berry, G., Boudol, G.: The chemical abstract machine. Theoretical Computer Science 96(1), 217–248 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Matthews, J., Findler, R.B.: An operational semantics for Scheme. JFP 18(1), 47–86 (2008)

    MATH  Google Scholar 

  14. Ştefănescu, A., Ciobâcă, C., Moore, B.M., Şerbănuţă, T.F., Roşu, G.: Reachability Logic in K. Technical Report. University of Illinois (November 2013), http://hdl.handle.net/2142/46296

  15. Filaretti, D., Maffeis, S.: An executable formal semantics of php. In: ECOOP. LNCS (to appear, 2014)

    Google Scholar 

  16. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the ACM 12(10), 576–580 (1969)

    Article  MATH  Google Scholar 

  18. Owicki, S.S., Gries, D.: Verifying properties of parallel programs: An axiomatic approach. Communications of the ACM 19(5), 279–285 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jones, C.B.: Specification and design of (parallel) programs. In: Mason, R.E.A. (ed.) Information Processing 1983: World Congress Proceedings, pp. 321–332. Elsevier (1984)

    Google Scholar 

  20. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theoretical Computer Science 375(1-3), 271–307 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS, pp. 55–74. IEEE (2002)

    Google Scholar 

  22. Feng, X.: Local rely-guarantee reasoning. In: POPL, pp. 315–327. ACM (2009)

    Google Scholar 

  23. Vafeiadis, V., Parkinson, M.J.: A marriage of rely/guarantee and separation logic. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Reddy, U.S., Reynolds, J.C.: Syntactic control of interference for separation logic. In: POPL, pp. 323–336. ACM (2012)

    Google Scholar 

  25. Hayman, J.: Granularity and concurrent separation logic. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 219–234. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  26. Bae, K., Escobar, S., Meseguer, J.: Abstract logical model checking of infinite-state systems using narrowing. In: RTA, pp. 81–96 (2013)

    Google Scholar 

  27. Rocha, C., Meseguer, J.: Proving safety properties of rewrite theories. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 314–328. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  28. Rocha, C., Meseguer, J., Muñoz, C.A.: Rewriting modulo smt and open system analysis. In: WRLA. LNCS (to appear, 2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ştefănescu, A., Ciobâcă, Ş., Mereuta, R., Moore, B.M., Şerbănută, T.F., Roşu, G. (2014). All-Path Reachability Logic. In: Dowek, G. (eds) Rewriting and Typed Lambda Calculi. RTA TLCA 2014 2014. Lecture Notes in Computer Science, vol 8560. Springer, Cham. https://doi.org/10.1007/978-3-319-08918-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08918-8_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08917-1

  • Online ISBN: 978-3-319-08918-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics