Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Predictive Differentially-Private Mechanism for Mobility Traces

  • Conference paper
Privacy Enhancing Technologies (PETS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8555))

Included in the following conference series:

Abstract

With the increasing popularity of GPS-enabled handheld devices, location based applications and services have access to accurate and real-time location information, raising serious privacy concerns for their millions of users. Trying to address these issues, the notion of geo-indistinguishability was recently introduced, adapting the well-known concept of Differential Privacy to the area of location-based systems. A Laplace-based obfuscation mechanism satisfying this privacy notion works well in the case of a sporadic use; Under repeated use, however, independently applying noise leads to a quick loss of privacy due to the correlation between the location in the trace.

In this paper we show that correlations in the trace can be in fact exploited in terms of a prediction function that tries to guess the new location based on the previously reported locations. The proposed mechanism tests the quality of the predicted location using a private test; in case of success the prediction is reported otherwise the location is sanitized with new noise. If there is considerable correlation in the input trace, the extra cost of the test is small compared to the savings in budget, leading to a more efficient mechanism.

We evaluate the mechanism in the case of a user accessing a location-based service while moving around in a city. Using a simple prediction function and two budget spending strategies, optimizing either the utility or the budget consumption rate, we show that the predictive mechanism can offer substantial improvements over the independently applied noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through spatial and temporal cloaking. In: Proc. of MobiSys, USENIX (2003)

    Google Scholar 

  2. Mokbel, M.F., Chow, C.Y., Aref, W.G.: The new casper: Query processing for location services without compromising privacy. In: Proc. of VLDB, pp. 763–774. ACM (2006)

    Google Scholar 

  3. Kido, H., Yanagisawa, Y., Satoh, T.: Protection of location privacy using dummies for location-based services. In: Proc. of ICDE Workshops, p. 1248 (2005)

    Google Scholar 

  4. Shankar, P., Ganapathy, V., Iftode, L.: Privately querying location-based services with SybilQuery. In: Proc. of UbiComp, pp. 31–40. ACM (2009)

    Google Scholar 

  5. Bamba, B., Liu, L., Pesti, P., Wang, T.: Supporting anonymous location queries in mobile environments with privacygrid. In: Proc. of WWW, pp. 237–246. ACM (2008)

    Google Scholar 

  6. Duckham, M., Kulik, L.: A formal model of obfuscation and negotiation for location privacy. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 152–170. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Xue, M., Kalnis, P., Pung, H.K.: Location diversity: Enhanced privacy protection in location based services. In: Choudhury, T., Quigley, A., Strang, T., Suginuma, K. (eds.) LoCA 2009. LNCS, vol. 5561, pp. 70–87. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Shokri, R., Theodorakopoulos, G., Troncoso, C., Hubaux, J.P., Boudec, J.Y.L.: Protecting location privacy: optimal strategy against localization attacks. In: Proc. of CCS, pp. 617–627. ACM (2012)

    Google Scholar 

  9. Shokri, R., Theodorakopoulos, G., Boudec, J.Y.L., Hubaux, J.P.: Quantifying location privacy. In: Proc. of S&P, pp. 247–262. IEEE (2011)

    Google Scholar 

  10. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Machanavajjhala, A., Kifer, D., Abowd, J.M., Gehrke, J., Vilhuber, L.: Privacy: Theory meets practice on the map. In: Proc. of ICDE, pp. 277–286. IEEE (2008)

    Google Scholar 

  12. Ho, S.S., Ruan, S.: Differential privacy for location pattern mining. In: Proc. of SPRINGL, pp. 17–24. ACM (2011)

    Google Scholar 

  13. Chen, R., Ács, G., Castelluccia, C.: Differentially private sequential data publication via variable-length n-grams. In: Proc. of CCS, pp. 638–649. ACM (2012)

    Google Scholar 

  14. Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Geo-indistinguishability: differential privacy for location-based systems. In: Proc. of CCS, pp. 901–914. ACM (2013)

    Google Scholar 

  15. Zheng, Y., Xie, X., Ma, W.Y.: Geolife: A collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33(2), 32–39 (2010)

    Google Scholar 

  16. Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive: driving directions based on taxi trajectories. In: GIS, pp. 99–108 (2010)

    Google Scholar 

  17. Chatzikokolakis, K., Palamidessi, C., Stronati, M.: A predictive differentially-private mechanism for mobility traces. CoRR abs/1311.4008 (2013)

    Google Scholar 

  18. Reed, J., Pierce, B.C.: Distance makes the types grow stronger: a calculus for differential privacy. In: Proc. of ICFP, pp. 157–168. ACM (2010)

    Google Scholar 

  19. Chatzikokolakis, K., Andrés, M.E., Bordenabe, N.E., Palamidessi, C.: Broadening the Scope of Differential Privacy using metrics. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 82–102. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Roth, A., Roughgarden, T.: Interactive privacy via the median mechanism. In: Proc. of STOC, pp. 765–774 (2010)

    Google Scholar 

  21. Gambs, S., Killijian, M.O., del Prado Cortez, M.N.: Show me how you move and i will tell you who you are. Trans. on Data Privacy 4(2), 103–126 (2011)

    Google Scholar 

  22. Hardt, M., Rothblum, G.N.: A multiplicative weights mechanism for privacy-preserving data analysis. In: FOCS, pp. 61–70. IEEE (2010)

    Google Scholar 

  23. Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N.: Differential privacy under continual observation. In: STOC, pp. 715–724. ACM (2010)

    Google Scholar 

  24. Terrovitis, M.: Privacy preservation in the dissemination of location data. SIGKDD Explorations 13(1), 6–18 (2011)

    Article  Google Scholar 

  25. Krumm, J.: A survey of computational location privacy. Personal and Ubiquitous Computing 13(6), 391–399 (2009)

    Article  Google Scholar 

  26. Shin, K.G., Ju, X., Chen, Z., Hu, X.: Privacy protection for users of location-based services. IEEE Wireless Commun. 19(2), 30–39 (2012)

    Article  Google Scholar 

  27. Hoh, B., Gruteser, M.: Protecting location privacy through path confusion. In: Proc. of SecureComm, pp. 194–205. IEEE (2005)

    Google Scholar 

  28. Dewri, R.: Local differential perturbations: Location privacy under approximate knowledge attackers. IEEE Trans. on Mobile Computing 99((PrePrints), 1 (2012)

    Google Scholar 

  29. Cheng, R., Zhang, Y., Bertino, E., Prabhakar, S.: Preserving user location privacy in mobile data management infrastructures. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 393–412. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  30. Ardagna, C.A., Cremonini, M., Damiani, E., De Capitani di Vimercati, S., Samarati, P.: Location privacy protection through obfuscation-based techniques. In: Barker, S., Ahn, G.-J. (eds.) Data and Applications Security 2007. LNCS, vol. 4602, pp. 47–60. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chatzikokolakis, K., Palamidessi, C., Stronati, M. (2014). A Predictive Differentially-Private Mechanism for Mobility Traces. In: De Cristofaro, E., Murdoch, S.J. (eds) Privacy Enhancing Technologies. PETS 2014. Lecture Notes in Computer Science, vol 8555. Springer, Cham. https://doi.org/10.1007/978-3-319-08506-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08506-7_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08505-0

  • Online ISBN: 978-3-319-08506-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics