Abstract
With the increasing popularity of GPS-enabled handheld devices, location based applications and services have access to accurate and real-time location information, raising serious privacy concerns for their millions of users. Trying to address these issues, the notion of geo-indistinguishability was recently introduced, adapting the well-known concept of Differential Privacy to the area of location-based systems. A Laplace-based obfuscation mechanism satisfying this privacy notion works well in the case of a sporadic use; Under repeated use, however, independently applying noise leads to a quick loss of privacy due to the correlation between the location in the trace.
In this paper we show that correlations in the trace can be in fact exploited in terms of a prediction function that tries to guess the new location based on the previously reported locations. The proposed mechanism tests the quality of the predicted location using a private test; in case of success the prediction is reported otherwise the location is sanitized with new noise. If there is considerable correlation in the input trace, the extra cost of the test is small compared to the savings in budget, leading to a more efficient mechanism.
We evaluate the mechanism in the case of a user accessing a location-based service while moving around in a city. Using a simple prediction function and two budget spending strategies, optimizing either the utility or the budget consumption rate, we show that the predictive mechanism can offer substantial improvements over the independently applied noise.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through spatial and temporal cloaking. In: Proc. of MobiSys, USENIX (2003)
Mokbel, M.F., Chow, C.Y., Aref, W.G.: The new casper: Query processing for location services without compromising privacy. In: Proc. of VLDB, pp. 763–774. ACM (2006)
Kido, H., Yanagisawa, Y., Satoh, T.: Protection of location privacy using dummies for location-based services. In: Proc. of ICDE Workshops, p. 1248 (2005)
Shankar, P., Ganapathy, V., Iftode, L.: Privately querying location-based services with SybilQuery. In: Proc. of UbiComp, pp. 31–40. ACM (2009)
Bamba, B., Liu, L., Pesti, P., Wang, T.: Supporting anonymous location queries in mobile environments with privacygrid. In: Proc. of WWW, pp. 237–246. ACM (2008)
Duckham, M., Kulik, L.: A formal model of obfuscation and negotiation for location privacy. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 152–170. Springer, Heidelberg (2005)
Xue, M., Kalnis, P., Pung, H.K.: Location diversity: Enhanced privacy protection in location based services. In: Choudhury, T., Quigley, A., Strang, T., Suginuma, K. (eds.) LoCA 2009. LNCS, vol. 5561, pp. 70–87. Springer, Heidelberg (2009)
Shokri, R., Theodorakopoulos, G., Troncoso, C., Hubaux, J.P., Boudec, J.Y.L.: Protecting location privacy: optimal strategy against localization attacks. In: Proc. of CCS, pp. 617–627. ACM (2012)
Shokri, R., Theodorakopoulos, G., Boudec, J.Y.L., Hubaux, J.P.: Quantifying location privacy. In: Proc. of S&P, pp. 247–262. IEEE (2011)
Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)
Machanavajjhala, A., Kifer, D., Abowd, J.M., Gehrke, J., Vilhuber, L.: Privacy: Theory meets practice on the map. In: Proc. of ICDE, pp. 277–286. IEEE (2008)
Ho, S.S., Ruan, S.: Differential privacy for location pattern mining. In: Proc. of SPRINGL, pp. 17–24. ACM (2011)
Chen, R., Ács, G., Castelluccia, C.: Differentially private sequential data publication via variable-length n-grams. In: Proc. of CCS, pp. 638–649. ACM (2012)
Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C.: Geo-indistinguishability: differential privacy for location-based systems. In: Proc. of CCS, pp. 901–914. ACM (2013)
Zheng, Y., Xie, X., Ma, W.Y.: Geolife: A collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33(2), 32–39 (2010)
Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive: driving directions based on taxi trajectories. In: GIS, pp. 99–108 (2010)
Chatzikokolakis, K., Palamidessi, C., Stronati, M.: A predictive differentially-private mechanism for mobility traces. CoRR abs/1311.4008 (2013)
Reed, J., Pierce, B.C.: Distance makes the types grow stronger: a calculus for differential privacy. In: Proc. of ICFP, pp. 157–168. ACM (2010)
Chatzikokolakis, K., Andrés, M.E., Bordenabe, N.E., Palamidessi, C.: Broadening the Scope of Differential Privacy using metrics. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 82–102. Springer, Heidelberg (2013)
Roth, A., Roughgarden, T.: Interactive privacy via the median mechanism. In: Proc. of STOC, pp. 765–774 (2010)
Gambs, S., Killijian, M.O., del Prado Cortez, M.N.: Show me how you move and i will tell you who you are. Trans. on Data Privacy 4(2), 103–126 (2011)
Hardt, M., Rothblum, G.N.: A multiplicative weights mechanism for privacy-preserving data analysis. In: FOCS, pp. 61–70. IEEE (2010)
Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N.: Differential privacy under continual observation. In: STOC, pp. 715–724. ACM (2010)
Terrovitis, M.: Privacy preservation in the dissemination of location data. SIGKDD Explorations 13(1), 6–18 (2011)
Krumm, J.: A survey of computational location privacy. Personal and Ubiquitous Computing 13(6), 391–399 (2009)
Shin, K.G., Ju, X., Chen, Z., Hu, X.: Privacy protection for users of location-based services. IEEE Wireless Commun. 19(2), 30–39 (2012)
Hoh, B., Gruteser, M.: Protecting location privacy through path confusion. In: Proc. of SecureComm, pp. 194–205. IEEE (2005)
Dewri, R.: Local differential perturbations: Location privacy under approximate knowledge attackers. IEEE Trans. on Mobile Computing 99((PrePrints), 1 (2012)
Cheng, R., Zhang, Y., Bertino, E., Prabhakar, S.: Preserving user location privacy in mobile data management infrastructures. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 393–412. Springer, Heidelberg (2006)
Ardagna, C.A., Cremonini, M., Damiani, E., De Capitani di Vimercati, S., Samarati, P.: Location privacy protection through obfuscation-based techniques. In: Barker, S., Ahn, G.-J. (eds.) Data and Applications Security 2007. LNCS, vol. 4602, pp. 47–60. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Chatzikokolakis, K., Palamidessi, C., Stronati, M. (2014). A Predictive Differentially-Private Mechanism for Mobility Traces. In: De Cristofaro, E., Murdoch, S.J. (eds) Privacy Enhancing Technologies. PETS 2014. Lecture Notes in Computer Science, vol 8555. Springer, Cham. https://doi.org/10.1007/978-3-319-08506-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-08506-7_2
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08505-0
Online ISBN: 978-3-319-08506-7
eBook Packages: Computer ScienceComputer Science (R0)