Abstract
Metabolic network analysis based on stoichiometric and constraint-based methods has become one of the most popular and successful modeling approaches in network and systems biology. Although these methods rely solely on the structure (stoichiometry) of metabolic networks and do not require extensive knowledge on mechanistic details of the involved reactions, they enable the extraction of important functional properties of biochemical reaction networks and deliver various testable predictions. This chapter gives an introduction on basic concepts and methods of stoichiometric and constraint-based modeling techniques. The mathematical foundations of the most important approaches—including graph-theoretical analysis, conservation relations, metabolic flux analysis, flux balance analysis, elementary modes, and minimal cut sets—will be presented, and applications in biology and biotechnology will be discussed. It will be shown that network problems arising in the context of metabolic network modeling are related to different fields of applied mathematics such as graph and hypergraph theory, linear algebra, linear programming, and combinatorial optimization. The methods presented herein are discussed in light of biological applications; however, most of them are generally applicable and useful to analyze any chemical or stoichiometric reaction network.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albert, R., Barabasi, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)
Ballerstein, K., von Kamp, A., Klamt, S., Haus, U.-U.: Minimal cut sets in a metabolic network are elementary modes in a dual network. Bioinformatics 28, 381–387 (2012)
Barabasi, A.-L., Bonabeau, E.: Scale-free networks. Sci. Am. 288, 60–99 (2003)
Barabasi, A.-L., Oltvai, Z.: Network biology. Nat. Rev. Genet. 5, 101–113 (2004)
Bates, J.T., Chivian, D., Arkin, A.P.: GLAMM: genome-linked application for metabolic maps. Nucleic Acids Res. 39, W400–W405 (2011)
Behre, J., Wilhelm, T., von Kamp, A., Ruppin, E., Schuster, S.: Structural robustness of metabolic networks with respect to multiple knockouts. J. Theor. Biol. 252, 433–441 (2008)
Berge, C.: Hypergraphs. Combinatorics of Finite Sets. North-Holland, Amsterdam (1989)
Bernal, A., Daza, E.: Metabolic networks: beyond the graph. Curr. Comput.-Aided Drug Des. 7, 122–132 (2011)
Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization. Athena Scientific, Belmont (1997)
Blazier, A.S., Papin, J.A.: Integration of expression data in genome-scale metabolic network reconstructions. Front. Physiol. 3, 299 (2012)
Bornholt, S.: Less is more in modeling large genetic networks. Science 310, 449–451 (2005)
Burgard, A.P., Pharkya, P., Maranas, C.D.: Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647–657 (2003)
Burgard, A.P., Nikolaev, E.V., Schilling, C.H., Maranas, C.D.: Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res. 14, 301–312 (2004)
Bushell, M., Sequeira, S., Khannapho, C., Zhao, H., Chater, K., Butler, M., Kierzek, A., Avignone-Rossa, C.: The use of genome scale metabolic flux variability analysis for process feed formulation based on an investigation of the effects of the ZWF mutation on antibiotic production in Streptomyces coelicolor. Enzyme Microb. Technol. 39, 1347–1353 (2006)
Caspi, R., Altman, T., Dreher, K., Fulcher, C.A., Subhraveti, P., Keseler, I.M., Kothari, A., Krummenacker, M., Latendresse, M., Mueller, L.A., Ong, Q., Paley, S., Pujar, A., Shearer, A.G., Travers, M., Weerasinghe, D., Zhang, P., Karp, P.D.: The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 40, 742–753 (2012)
Chandrasekaran, S., Price, N.D.: Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. 107, 17845–17850 (2010)
Clark, B.L.: Stoichiometric network analysis. Cell Biophys. 12, 237–253 (1988)
Conradi, C., Flockerzi, D.: Multistationarity in mass action networks with applications to ERK activation. J. Math. Biol. 65, 107–156 (2012)
Copeland, W.B., Bartley, B.A., Chandran, D., Galdzicki, M., Kim, K.H., Sleight, S.C., Maranas, C.D., Sauro, H.M.: Computational tools for metabolic engineering. Metab. Eng. 14, 270–280 (2012)
Cornish-Bowden, A., Hofmeyr, J.H.: The role of stoichiometric analysis in studies of metabolism: an example. J. Theor. Biol. 216, 179–191 (2002)
Covert, M.W., Schilling, C.H., Palsson, B.O.: Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213, 73–88 (2001)
Covert, M.W., Knight, E.M., Reed, J.L., Herrgard, M.J., Palsson, B.O.: Integrating high-throughput and computational data elucidates bacterial networks. Nature 429, 92–96 (2004)
Covert, M.W., Xiao, N., Chen, T.J., Karr, J.R.: Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 24, 2044–2050 (2008)
Craciun, G., Tang, Y., Feinberg, M.: Understanding bistability in complex enzyme-driven reaction networks. Proc. Natl. Acad. Sci. 103, 8697–8702 (2006)
Csete, M., Doyle, J.: Bow ties, metabolism and disease. Trends Biotechnol. 22, 446–450 (2004)
David, L., Marashi, S.A., Larhlimi, A., Mieth, B., Bockmayr, A.: FFCA: a feasibility-based method for flux coupling analysis of metabolic networks. BMC Bioinform. 12, 236 (2011)
de Figueiredo, L.F., Podhorski, A., Rubio, A., Kaleta, C., Beasley, J.E., Schuster, S., Planes, F.J.: Computing the shortest elementary flux modes in genome-scale metabolic networks. Bioinformatics 25, 3158–3165 (2009)
Droste, P., Miebach, S., Niedenführ, S., Wiechert, W., Nöh, K.: Visualizing multi-omics data in metabolic networks with the software Omix: a case study. Biosystems 105, 154–161 (2011)
Durot, M., Bourguignon, P.Y., Schachter, V.: Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol. Rev. 33, 164–190 (2009)
Edwards, J.S., Palsson, B.O.: The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc. Natl. Acad. Sci. 97, 5528–5533 (2000)
Edwards, J.S., Ibarra, R.U., Palsson, B.O.: In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19, 125–130 (2001)
Feinberg, M.: Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems. Chem. Eng. Sci. 42, 2229–2268 (1987)
Feist, A.M., Palsson, B.O.: The biomass objective function. Curr. Opin. Microbiol. 13, 344–349 (2010)
Feist, A.M., Herrgard, M.J., Thiele, I., Reed, J.L., Palsson, B.O.: Reconstruction of biochemical networks in microorganisms. Nat. Rev. Microbiol. 7, 129–143 (2009)
Feng, X., Xu, Y., Chen, Y., Tang, Y.J.: MicrobesFlux: a web platform for drafting metabolic models from the KEGG database. BMC Syst. Biol. 6, 94 (2012)
Foerster, J., Famili, I., Palsson, B.O., Nielsen, J.: Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae. Omics. J. Integr. Biol. 7, 193–202 (2003)
Fong, S.S., Palsson, B.O.: Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat. Genet. 36, 1056–1058 (2004)
Fong, S.S., Burgard, A.P., Herring, C.D., Knight, E.M., Blattner, F.R., Maranas, C.D., Palsson, B.O.: In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol. Bioeng. 91, 643–648 (2005)
Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms. J. Algorithms 21, 618–628 (1996)
Fukuda, K., Prodon, A.: Double description method revisited. In: Deza, M., Euler, R., Manoussakis, I. (eds.) Combinatorics and Computer Science, vol. 1120, pp. 91–111. Springer, Berlin (1996)
Funahashi, A., Matsuoka, Y., Jouraku, A., Morohashi, M., Kikuchi, N., Kitano, H.: CellDesigner 3.5: a versatile modeling tool for biochemical networks. Proc. IEEE 96, 1254–1265 (2008)
Gagneur, J., Klamt, S.: Computation of elementary modes: a unifying framework and the new binary approach. BMC Bioinform. 5, 175 (2004)
Gleeson, J., Ryan, J.: Identifying minimally infeasible subsystems of inequalities. ORSA J. Comput. 2, 61–63 (1990)
Hädicke, O., Klamt, S.: CASOP: a computational approach for strain optimization aiming at high productivity. J. Biotechnol. 147, 88–101 (2010)
Hädicke, O., Klamt, S.: Computing complex metabolic intervention strategies using constrained minimal cut sets. Metab. Eng. 13, 204–213 (2011)
Hädicke, O., Grammel, H., Klamt, S.: Metabolic network modeling of redox balancing and biohydrogen production in purple nonsulfur bacteria. BMC Syst. Biol. 5, 150 (2011)
Haggart, C.R., Bartell, J.A., Saucerman, J.J., Papin, J.A.: Whole-genome metabolic network reconstruction and constraint-based modeling. Methods Enzymol. 500, 411–433 (2011)
Haus, U.-U., Klamt, S., Stephen, T.: Computing knock-out strategies in metabolic networks. J. Comput. Biol. 15, 259–268 (2008)
Heinrich, R., Schuster, S.: The Regulation of Cellular Systems. Chapman & Hall, New York (1996)
Henry, C.S., Broadbelt, L.J., Hatzimanikatis, V.: Thermodynamics-based metabolic flux analysis. Biophys. J. 92, 1792–1805 (2007)
Henry, C.S., DeJongh, M., Best, A.B., Frybarger, P.M., Linsay, B., Stevens, R.L.: High-throughput generation and optimization of genome-scale metabolic models. Nat. Biotechnol. 28, 977–982 (2010)
Hoppe, A., Hoffmann, S., Holzhuetter, H.G.: Including metabolite concentrations into flux-balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks. BMC Syst. Biol. 1, 23 (2007)
Hoppe, A., Hoffmann, S., Gerasch, A., Gille, C., Holzhütter, H.G.: FASIMU: flexible software for flux-balance computation series in large metabolic networks. BMC Bioinform. 12 (2011)
Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003)
Ibarra, R.U., Edwards, J.S., Palsson, B.O.: Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420, 186–189 (2002)
Ip, K., Colijn, C., Lun, D.S.: Analysis of complex metabolic behavior through pathway decomposition. BMC Syst. Biol. 5, 91 (2011)
Jankowski, M.D., Henry, C.S., Broadbelt, L.J., Hatzimanikatis, V.: Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys. J. 95, 1487–1499 (2008)
Jantama, K., Haupt, M.J., Svoronos, S.A., Zhang, X., Moore, J.C., Shanmugam, K.T., Ingram, L.O.: Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol. Bioeng. 99, 1140–1153 (2008)
Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.L.: The large-scale organisation of metabolic networks. Nature 407, 651–654 (2000)
Jungreuthmayer, C., Zanghellini, J.: Designing optimal cell factories: integer programming couples elementary mode analysis with regulation. BMC Syst. Biol. 6, 103 (2012)
Kaleta, C., de Figueiredo, L.F., Schuster, S.: Can the whole be less than the sum of its parts? Pathway analysis in genome-scale metabolic networks using elementary flux patterns. Genome Res. 19, 1872–1883 (2009)
Kaleta, C., de Figueiredo, L.F., Werner, S., Guthke, R., Ristow, M., Schuster, S.: In silico evidence for gluconeogenesis from fatty acids in humans. PLoS Comput. Biol. 7, e1002116 (2011)
Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., Tanabe, M.: KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, 109–114 (2012)
Karp, P.D., Caspi, R.: A survey of metabolic databases emphasizing the MetaCyc family. Arch. Toxicol. 85, 1015–1033 (2011)
Karp, P.D., Riley, M., Saier, M., Paulsen, I.T., Paley, S.M., Pellegrini-Toole, A.: The EcoCyc and MetaCyc databases. Nucleic Acids Res. 28, 56–59 (2000)
Karp, P.D., Paley, S.M., Krummenacker, M., Latendresse, M., Dale, J.M., Lee, T.J., Kaipa, P., Gilham, F., Spaulding, A., Popescu, L., Altman, T., Paulsen, I., Keseler, I.M., Caspi, R.: Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief. Bioinform. 11, 40–79 (2010)
Kelk, S.M., Olivier, B.G., Stougie, L., Bruggeman, F.J.: Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks. Sci. Rep. 2, 580 (2012)
Kim, J., Reed, J.L.: OptORF: optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains. BMC Syst. Biol. 4, 53 (2010)
Klamt, S.: Generalized concept of minimal cut sets in biochemical networks. Biosystems 83, 233–247 (2006)
Klamt, S., Gilles, E.D.: Minimal cut sets in biochemical reaction networks. Bioinformatics 20, 226–234 (2004)
Klamt, S., Stelling, J.: Two approaches for metabolic pathway analysis? Trends Biotechnol. 21, 64–69 (2003)
Klamt, S., Stelling, J.: Stoichiometric and constraint-based modeling. In: Szallasi, Z., Stelling, J., Periwal, V. (eds.) System Modeling in Cellular Biology, pp. 73–96. MIT Press, Cambridge (2006)
Klamt, S., von Kamp, A.: An application programming interface for CellNetAnalyzer. Biosystems 105, 162–168 (2011)
Klamt, S., Schuster, S., Gilles, E.D.: Calculability analysis in underdetermined metabolic networks illustrated by a model of the central metabolism in purple nonsulfur bacteria. Biotechnol. Bioeng. 77, 734–751 (2002)
Klamt, S., Gagneur, J., von Kamp, A.: Algorithmic approaches for computing elementary modes in large biochemical reaction networks. Syst. Biol. 152, 249–255 (2005)
Klamt, S., Saez-Rodriguez, J., Gilles, E.D.: Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC Syst. Biol. 1, 2 (2007)
Klamt, S., Haus, U.-U., Theis, F.: Hypergraphs and cellular networks. PLoS Comput. Biol. 5, e1000385 (2009)
Klukas, C., Schreiber, F.: Integration of -omics data and networks for biomedical research with VANTED. J. Integr. Bioinform. 7, 112 (2010)
Latendresse, M., Krummenacker, M., Trupp, M., Karp, P.D.: Construction and completion of flux balance models from pathway databases. Bioinformatics 3, 388–396 (2012)
Le Novère, N., Hucka, M., Mi, H., Moodie, S., Schreiber, F., Sorokin, A., et al.: The systems biology graphical notation. Nat. Biotechnol. 27, 735–741 (2009)
Leiser, J., Blum, J.J.: On the analysis of substrate cycles in large metabolic systems. Cell Biophys. 11, 123–138 (1987)
Lewis, N.E., Nagarajan, H., Palsson, B.O.: Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 10, 291–305 (2012)
Lun, D.S., Rockwell, G., Guido, N.J., Baym, M., Kelner, J.A., Berger, B., Galagan, J.E., Church, G.M.: Large-scale identification of genetic design strategies using local search. Mol. Syst. Biol. 5, 296 (2009)
Maertens, J., Vanrolleghem, P.A.: Modeling with a view to target identification in metabolic engineering: a critical evaluation of the available tools. Biotechnol. Prog. 26, 313–331 (2010)
Mahadevan, R., Schilling, C.H.: The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng. 5, 264–276 (2003)
Mahadevan, R., Edwards, J.S., Doyle, F.J.: Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys. J. 83, 1331–1340 (2002)
Marashi, S.A., David, L., Bockmayr, A.: Analysis of metabolic subnetworks by flux cone projection. Algorithms Mol. Biol. 7, 17 (2012)
Mavrovouniotis, M.L., Stephanopoulos, G., Stephanopoulos, G.: Computer-aided synthesis of biochemical pathways. Biotechnol. Bioeng. 36, 1119–1132 (1990)
Melzer, G., Esfandabadi, M.E., Franco-Lara, E., Wittmann, C.: Flux design: in silico design of cell factories based on correlation of pathway fluxes to desired properties. BMC Syst. Biol. 3, 120 (2009)
Nagasaki, M., Saito, A., Jeong, E., Li, C., Kojima, K., Ikeda, E., Miyano, S.: Cell Illustrator 4.0: a computational platform for systems biology. In Silico Biol. 10, 5–26 (2010)
Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)
Oberhardt, M.A., Palsson, B.O., Papin, J.A.: Applications of genome-scale metabolic reconstructions. Mol. Syst. Biol. 5, 320 (2009)
Oxley, J.G.: Matroid Theory. Oxford University Press, Oxford (2004)
Papin, J.A., Price, N.D., Palsson, B.O.: Extreme pathway lengths and reaction participation in genome-scale metabolic networks. Genome Res. 12, 1889–1900 (2002)
Papin, J.A., Stelling, J., Price, N.D., Klamt, S., Schuster, S., Palsson, B.O.: Comparison of network-based pathway analysis methods. Trends Biotechnol. 22, 400–405 (2004)
Patil, K.R., Rocha, I., Förster, J., Nielsen, J.: Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinform. 6, 308 (2005)
Pfeiffer, T., Sanchez-Valdenebro, I., Nuno, J.C., Montero, F., Schuster, S.: METATOOL: for studying metabolic networks. Bioinformatics 15, 251–257 (1999)
Pharkya, P., Maranas, C.D.: An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab. Eng. 8, 1–13 (2006)
Pharkya, P., Burgard, A.P., Maranas, C.D.: OptStrain: a computational framework for redesign of microbial production systems. Genome Res. 14, 2367–2376 (2004)
Portnoy, V.A., Bezdan, D., Zengler, K.: Adaptive laboratory evolution—harnessing the power of biology for metabolic engineering. Curr. Opin. Biotechnol. 22, 590–594 (2011)
Price, N.D., Famili, I., Beard, D.A., Palsson, B.O.: Extreme pathways and Kirchhoff’s second law. Biophys. J. 83, 2879–2882 (2002)
Price, N.D., Papin, J.A., Schilling, C.H., Palsson, B.O.: Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol. 21, 162–169 (2003)
Price, N.D., Reed, J.L., Palsson, B.O.: Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2, 886–897 (2004)
Ranganathan, S., Suthers, P.F., Maranas, C.D.: OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput. Biol. 6(4), e1000744 (2010)
Reder, C.: Metabolic control theory: a structural approach. J. Theor. Biol. 135, 175–201 (1986)
Reed, J.L.: Shrinking the metabolic solution space using experimental datasets. PLoS Comput. Biol. 8, e1002662 (2012)
Reed, J.L., Palsson, B.O.: Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res. 14, 1797–1805 (2004)
Rocha, I., Maia, P., Evangelista, P., Vilaca, P., Soares, S., Pinto, J.P., Nielsen, J., Patil, K.R., Ferreira, E.C., Rocha, M.: OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst. Biol. 4, 45 (2010)
Rockafellar, R.T.: Convex Analysis. University Press (1970)
Sauro, H.M., Hucka, M., Finney, A., Wellock, C., Bolouri, H., Doyle, J., Kitano, H.: Next generation simulation tools: the systems biology workbench and BioSPICE integration. Omics. J. Integr. Biol. 7, 355–372 (2004)
Schellenberger, J., Park, J.O., Conrad, T.M., Palsson, B.O.: BiGG: a biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinform. 11, 213 (2010)
Schellenberger, J., Lewis, N.E., Palsson, B.O.: Elimination of thermodynamically infeasible loops in steady-state metabolic models. Biophys. J. 100, 544–553 (2011)
Schellenberger, J., Que, R., Fleming, R.M., Thiele, I., Orth, J.D., Feist, A.M., Zielinski, D.C., Bordbar, A., Lewis, N.E., Rahmanian, S., Kang, J., Hyduke, D.R., Palsson, B.O.: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat. Protoc. 6, 1290–1307 (2011)
Schilling, C.H., Letscher, D., Palsson, B.O.: Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J. Theor. Biol. 203, 229–248 (2000)
Schuetz, R., Kuepfer, L., Sauer, U.: Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3, 119 (2007)
Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M., Sauer, U.: Multidimensional optimality of microbial metabolism. Science 336, 601–604 (2012)
Schuster, S., Hilgetag, C.: On elementary flux modes in biochemical reaction systems at steady state. J. Biol. Syst. 2, 165–182 (1994)
Schuster, S., Fell, D.A., Dandekar, T.: A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 18, 326–332 (2000)
Schuster, S., Klamt, S., Weckwerth, W., Moldenhauer, F., Pfeiffer, T.: Use of network analysis of metabolic systems in bioengineering. Bioprocess Biosyst. Eng. 24, 363–372 (2002)
Schuster, S., Pfeiffer, T., Fell, D.A.: Is maximization of molar yield in metabolic networks favoured by evolution? J. Theor. Biol. 252, 497–504 (2008)
Schwarz, R., Musch, P., von Kamp, A., Engels, B., Schirmer, H., Schuster, S., Dandekar, T.: YANA—a software tool for analyzing flux modes, gene-expression and enzyme activities. BMC Bioinform. 6, 135 (2005)
Schwender, J., Goffman, F., Ohlrogge, J.B., Shachar-Hill, Y.: Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432, 779–782 (2004)
Segre, D., Vitkup, D., Church, G.M.: Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. 99, 15112–15117 (2002)
Shinar, G., Feinberg, M.: Structural sources of robustness in biochemical reaction networks. Science 327, 1389–1391 (2010)
Shlomi, T., Berkman, O., Ruppin, E.: Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc. Natl. Acad. Sci. 24, 7695–7700 (2005)
Shlomi, T., Eisenberg, Y., Sharan, R., Ruppin, E.: A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol. Syst. Biol. 3, 101 (2007)
Shlomi, T., Cabili, M., Herrgard, M., Palsson, B.O., Ruppin, E.: Network-based prediction of human tissue-specific metabolism. Nat. Biotechnol. 26, 1003–1010 (2008)
Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S., Gilles, E.D.: Metabolic network structure determines key aspects of functionality and regulation. Nature 420, 190–193 (2002)
Stephanopoulos, G.N., Aristidou, A.A., Nielsen, J.: Metabolic Engineering. Academic Press, San Diego (1998)
Strang, G.: Linear Algebra and Its Applications. Academic Press, New York (1980)
Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)
Suthers, P.F., Zomorrodi, A., Maranas, C.D.: Genome-scale gene/reaction essentiality and synthetic lethality analysis. Mol. Syst. Biol. 5, 301 (2009)
Tepper, N., Shlomi, T.: Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinformatics 26, 536–543 (2010)
Terzer, M., Stelling, J.: Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics 24, 2229–2235 (2008)
Thiele, I., Palsson, B.O.: A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5, 93–121 (2010)
Trinh, C.T., Srienc, F.: Metabolic engineering of Escherichia coli for efficient conversion of glycerol to ethanol. Appl. Environ. Microbiol. 75, 6696–6705 (2009)
Trinh, C.T., Carlson, R., Wlaschin, A., Srienc, F.: Design, construction and performance of the most efficient biomass producing E. coli bacterium. Metab. Eng. 8, 628–638 (2006)
Trinh, C.T., Unrean, P., Srienc, F.: Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl. Environ. Microbiol. 74, 3634–3643 (2008)
Trinh, C.T., Wlaschin, A., Srienc, F.: Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism. Appl. Microbiol. Biotechnol. 81, 813–826 (2009)
Unrean, P., Trinh, C.T., Srienc, F.: Rational design and construction of an efficient E. coli for production of diapolycopendioic acid. Metab. Eng. 12, 112–122 (2010)
Urbanczik, R., Wagner, C.: An improved algorithm for stoichiometric network analysis: theory and applications. Bioinformatics 21, 1203–1210 (2005)
Van Berlo, R.J., de Ridder, D., Daran, J.M., Daran-Lapujade, P.A., Teusink, B., Reinders, M.J.: Predicting metabolic fluxes using gene expression differences as constraints. IEEE/ACM Trans. Comput. Biol. Bioinform. 8, 206–216 (2011)
Van der Heijden, R.T.J.M., Heijnen, J.J., Hellinga, C., Romein, B., Luyben, K.Ch.A.M.: Linear constraint relations in biochemical reaction systems: I. Classification of the calculability and the balanceability of conversion rates. Biotechnol. Bioeng. 43, 3–10 (1994)
Varma, A., Palsson, B.O.: Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microbiol. 60, 3724–3731 (1994)
Varma, A., Boesch, B.W., Palsson, B.O.: Biochemical production capabilities of Escherichia coli. Biotechnol. Bioeng. 42, 59–73 (1993)
von Kamp, A., Schuster, S.: Metatool 5.0: fast and flexible elementary modes analysis. Bioinformatics 22, 1930–1931 (2006)
Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 409–410 (1998)
Wiback, S.J., Mahadevan, R., Palsson, B.O.: Reconstructing metabolic flux vectors from extreme pathways: defining the alpha-spectrum. J. Theor. Biol. 224, 313–324 (2003)
Wiechert, W.: 13C metabolic flux analysis. Metab. Eng. 3, 195–206 (2001)
Wolf, J., Passarge, J., Somsen, O.J.G., Snoep, J.L., Heinrich, R., Westerhoff, H.V.: Transduction of intracellular and intercellular dynamics in yeast glycolytic oscillations. Biophys. J. 78, 1145–1153 (2000)
Yim, H., et al.: Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol. Nat. Chem. Biol. 7, 445–452 (2011)
Zomorrodi, A.R., Suthers, P.F., Ranganathan, S., Maranas, C.D.: Mathematical optimization applications in metabolic networks. Metab. Eng. (2012). doi:10.1016/j.ymben.2012.09.005
Acknowledgement
This work was partially supported by the Federal State of Saxony-Anhalt (Research Center “Dynamic Systems: Biosystems Engineering”) and by the the German Federal Ministry of Education and Research (e:Bio project CYANOSYS II (FKZ 0316183D); Biotechnologie 2020+ project CASCO2 (FKZ: 031A180B)).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Klamt, S., Hädicke, O., von Kamp, A. (2014). Stoichiometric and Constraint-Based Analysis of Biochemical Reaction Networks. In: Benner, P., Findeisen, R., Flockerzi, D., Reichl, U., Sundmacher, K. (eds) Large-Scale Networks in Engineering and Life Sciences. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-08437-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-08437-4_5
Publisher Name: Birkhäuser, Cham
Print ISBN: 978-3-319-08436-7
Online ISBN: 978-3-319-08437-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)