Abstract
Understanding the public attention and perception towards epidemics is critical for public health response. However, the research question concerning the spatio-temporal patterns of public attention and the interactions with media attention and severity of epidemic is still not well studied. Aim to fill this research gap, we chose the H1N1 influenza outbreak in the mainland of China in 2009 as case to study the spatio-temporal patterns of public attention, and their correlations with media attention and severity of epidemic. The results of this paper indicate that public attention and media attention had high correlation from both temporal and spatial perspectives, which can provide us significant insights to understand the collective behavior of massive online users during emergency events.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zeng, D., Chen, H., Lusch, R., Li, S.-H.: Social Media Analytics and Intelligence. Intell.Syst. IEEE 25, 13–16 (2010)
Zheng, X., Zhong, Y., Zeng, D., Wang, F.-Y.: Social influence and spread dynamics in social networks. Front. Comput. Sci. 6(5), 611–620 (2012)
Wang, Y., Zeng, D., Zheng, X., Wang, F.: Propagation of online news: Dynamic patterns. In: IEEE International Conference on Intelligence and Security Informatics, ISI 2009, pp. 257–259 (2009)
Wang, Y., Zeng, D., Zhu, B., Zheng, X., Wang, F.: Patterns of news dissemination through online news media: A case study in China. Inf. Syst. Front., 1–14 (July 2012)
Zheng, X., Zeng, D., Wang, F.-Y.: Social balance in signed networks. Inf. Syst. Front., 1–19 (January 2014)
SteelFisher, G.K., Blendon, R.J., Bekheit, M.M., Lubell, K.: The Public’s Response to the 2009 H1N1 Influenza Pandemic. N. Engl. J. Med. 362(22), e65 (2010)
Ginsberg, J., Mohebbi, M.H., Patel, R.S., Brammer, L., Smolinski, M.S., Brilliant, L.: Detecting influenza epidemics using search engine query data. Nature 457(7232), 1012–1014 (2009)
Wilson, K., Brownstein, J.S.: Early detection of disease outbreaks using the Internet. Can. Med. Assoc. J. 180(8), 829–831 (2009)
Luo, Y., Zeng, D., Cao, Z., Zheng, X., Wang, Y., Wang, Q., Zhao, H.: Using multi-source web data for epidemic surveillance: A case study of the 2009 Influenza A (H1N1) pandemic in Beijing. In: 2010 IEEE International Conference on Service Operations and Logistics and Informatics (SOLI), pp. 76–81 (2010)
Collier, N., Doan, S., Kawazoe, A., Goodwin, R.M., Conway, M., Tateno, Y., Ngo, Q.-H., Dien, D., Kawtrakul, A., Takeuchi, K., Shigematsu, M., Taniguchi, K.: BioCaster: detecting public health rumors with a Web-based text mining system. Bioinformatics 24(24), 2940–2941 (2008)
Cui, K., Cao, Z., Zheng, X., Zeng, D., Zeng, K., Zheng, M.: A Geospatial Analysis on the Potential Value of News Comments in Infectious Disease Surveillance. In: Chau, M., Wang, G.A., Zheng, X., Chen, H., Zeng, D., Mao, W. (eds.) PAISI 2011. LNCS, vol. 6749, pp. 85–93. Springer, Heidelberg (2011)
Corley, C.D., Cook, D.J., Mikler, A.R., Singh, K.P.: Text and Structural Data Mining of Influenza Mentions in Web and Social Media. Int. J. Environ. Res. Public. Health 7(2), 596–615 (2010)
Culotta, A.: Towards Detecting Influenza Epidemics by Analyzing Twitter Messages. In: Proceedings of the First Workshop on Social Media Analytics, New York, NY, USA, pp. 115–122 (2010)
Laurent, M., Vickers, T.J.: Seeking Health Information Online: Does Wikipedia Matter? J. Am. Med. Inform. Assoc. 16(4), 471–479 (2009)
Zhang, Z., Zheng, X., Zeng, D.D., Cui, K., Luo, C., He, S., Leischow, S.: Discovering seasonal patterns of smoking behavior using online search information. In: 2013 IEEE International Conference on Intelligence and Security Informatics (ISI), pp. 371–373 (2013)
Moran, P.: The Interpretation of Statistical Maps. J. R. Stat. Soc. Ser. B-Stat. Methodol. 10(2), 243–251 (1948)
Cao, Z., Zeng, D., Zheng, X., Wang, Q., Wang, F., Wang, J., Wang, X.: Spatio-temporal evolution of Beijing 2003 SARS epidemic. Sci. China Earth Sci. 53(7), 1017–1028 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Cui, K., Zheng, X., Zhang, Z., Zeng, D. (2014). Analyzing Spatio-temporal Patterns of Online Public Attentions in Emergency Events: A Case Study of 2009 H1N1 Influenza Outbreak in China. In: Zheng, X., Zeng, D., Chen, H., Zhang, Y., Xing, C., Neill, D.B. (eds) Smart Health. ICSH 2014. Lecture Notes in Computer Science, vol 8549. Springer, Cham. https://doi.org/10.1007/978-3-319-08416-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-08416-9_5
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08415-2
Online ISBN: 978-3-319-08416-9
eBook Packages: Computer ScienceComputer Science (R0)