Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 303))

  • 1138 Accesses

Abstract

This research is in the field of remote healthcare monitoring systems which propose software solutions to monitor elderly people in their own homes. Our objective is to take advantage of the technological diversity of several Decision Support Systems used to detect distress situations. We propose a multi-agent architecture; each agent encapsulates a decision support system. This encapsulation enables the fusion of heterogonous decisions. In this paper, we present the architecture of our multi-agent system (MAS) and the computation methods to perform the decision fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Conseil d’orientation des retraites: Retraites: perspectives 2020, 2040 et 2060 (March 2013)

    Google Scholar 

  2. Rammal, A., Trouilhet, S., Singer, N., Pécatte, J.M.: An adaptative System for Home monitoring Using a Multiagent Classification of Patterns. International Journal of Telemedcine and Application 2008 (March 2008)

    Google Scholar 

  3. Belle, A., Kon, M.A., Najarian, K.: Biomedical Informatics for Computer-Aided Decision Support Systems: A Survey. Scientific World Journal, 769639 (2013)

    Google Scholar 

  4. Marschollek, M.: Decision support at home (DS@HOME) – system architectures and requirements. BMC Medical Informatics and Decision Making 12, 43 (2012)

    Article  Google Scholar 

  5. Zato, C., De Paz, J.F., de la Prieta, F., Lopez, V., Bajo, J., Corchado, J.M.: Intelligent context-based information fusion system in health care: Helping people live healthier. In: 2010 13th Conference on Information Fusion (FUSION), July 26-29, pp. 1–7 (2010)

    Google Scholar 

  6. Artikis, A., Bamidis, P.D., et al.: Supporting tele-health and AI-based clinical decision making with sensor data fusion and semantic interpretation: The USEFIL case study. In: The ECAI Workshop NetMed 2012, Montpellier (August 27, 2012)

    Google Scholar 

  7. Sycara, K., Glinton, R., Yu, B., Giampapa, J., Owens, S., Lewis, M., Grindle, L.C.: An integrated approach to high-level information fusion. Information Fusion 10(1), 25–50 (2009)

    Article  Google Scholar 

  8. Phillips-Wren, G.E., McKniff, S.: Fusing Decision Support into the Fabric of Healthcare to Prevent Medication Errors. In: Respício, A., Burstein, F. (eds.) DSS, pp. 27–36. IOS Press (2012)

    Google Scholar 

  9. Fraile, J.A., Bajo, J., Corchado, J.M.: Multi-Agent Architecture for Dependent Environments. Providing Solutions for Home Care. Inteligencia Artificial. RevistaIberoamericana de Inteligencia Artificial, 36–45 (2009)

    Google Scholar 

  10. Corchado, J.M., Bajo, J., Tapia, D.I., Abraham, A.: Using Heterogeneous Wireless Sensor Networks in a Telemonitoring System for Healthcare. IEEE Transactions on Information Technology in Biomedicine 14(2), 234–240 (2010)

    Article  Google Scholar 

  11. Castanedo, F., García, J., et al.: Data fusion to improve trajectory tracking in a Cooperative Surveillance Multi-Agent Architecture. In: Applied Artificial Intelligence Group (GIAA). Universidad Carlos III 22, 28270, Colmenarejo (2010)

    Google Scholar 

  12. Liu, Y.-H., Wang, S.-Z., Du., X.-M.: A multi-agent information fusion model for ship collision avoidance. In: International Conference on Machine Learning and Cybernetics, vol. 1, pp. 6–11 (2008)

    Google Scholar 

  13. Sycara, K., Glinton, R., Yu, B., Giampapa, J., et al.: An integrated approach to high-level information fusion. Information Fusion 10(1), 25–50 (2009)

    Article  Google Scholar 

  14. Palazzo, L., Rossi, M., Dragoni, A.F., et al.: A Multi-Agent Architecture for Health Information Systems. In: International Workshop on Artificial Intelligence and NetMedicine (August. 2013)

    Google Scholar 

  15. Tapia, D.I., Sara, R., Javier, B., Corchado, J.M.: FUSION@, A SOA-Based Multi-agent Architecture. In: Corchado, J.M., Rodríguez, S., Llinas, J., Molina, J.M. (eds.) DCAI 2008. ASC, vol. 50, pp. 99–107. Springer, Heidelberg (2009)

    Google Scholar 

  16. Dhouib, M.A., Bougueroua, L., Węgrzyn-Wolska, K.: Combination of decision support system (DSS) for remote healthcare monitoring using a multi-agent approach. In: Chaki, N., Cortesi, A. (eds.) CISIM 2011. Communications in Computer and Information Science, vol. 245, pp. 74–84. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Fan, B., Pu, J.: Multi-Agent Decision Fusion and Its Application in Adversarial Multi-robot System. In: International Workshop on Education Technology and Training, 2008 International Workshop on Geoscience and Remote Sensing, ETT and GRS 2008, December 21-22, vol. 1, pp. 672–675 (2008)

    Google Scholar 

  18. Smets, P.: Decision making in the TBM: the necessity of the pignistic transformation. International Journal of Approximate Reasoning 38(2), 133–147 (2004), doi:10.1016/j.ijar.2004.05.003, ISSN 0888-613X

    Google Scholar 

  19. Rao, A.A., Georgeff, M.P.: An abstract architecture for rational agents. In: Nebel, N., Rich, C., Swartout, W. (eds.) KR 1992, pp. 439–449. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

  20. Rao, A.A., Georgeff, M.P.: A model-theoretical approach to the verification of situated reasoning systems. In: Bajcsy, R. (ed.) IJICAI 1993, pp. 318–324. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  21. Wooldridge, M., Jennungs, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent Systems 3(3), 285–312 (2000)

    Article  Google Scholar 

  22. Niu, G., Han, T., Yang, B.-S., Tan, A.C.C.: Multi-agent decision fusion for motor fault diagnosis. Mechanical Systems and Signal Processing 21(3), 1285–1299 (2006), doi:10.1016/j.ymssp.2006.03.003, ISSN 0888-3270

    Google Scholar 

  23. Wooldridge, M., Jennungs, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent Systems 3(3), 285–312 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Achraf Dhouib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dhouib, M.A., Bougueroua, L., Węgrzyn-Wolska, K., Benayoune, S. (2014). Multi-Agent System for Remote Healthcare Monitoring. In: Kömer, P., Abraham, A., Snášel, V. (eds) Proceedings of the Fifth International Conference on Innovations in Bio-Inspired Computing and Applications IBICA 2014. Advances in Intelligent Systems and Computing, vol 303. Springer, Cham. https://doi.org/10.1007/978-3-319-08156-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08156-4_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08155-7

  • Online ISBN: 978-3-319-08156-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics