Nothing Special   »   [go: up one dir, main page]

Skip to main content

Vester’s Sensitivity Model for Genetic Networks with Time-Discrete Dynamics

  • Conference paper
Algorithms for Computational Biology (AlCoB 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8542))

Included in the following conference series:

Abstract

We propose a new method to explore the characteristics of genetic networks whose dynamics are described by a linear discrete dynamical model x t + 1 = Ax t . The gene expression data x t is given for various time points and the matrix A of interactions among the genes is unknown. First we formulate and solve a parameter estimation problem by linear programming in order to obtain the entries of the matrix A. We then use ideas from Vester’s Sensitivity Model, more precisely, the Impact Matrix, and the determination of the Systemic Roles, to understand the interactions among the genes and their role in the system. The method identifies prominent outliers, that is, the most active, reactive, buffering and critical genes in the network. Numerical examples for different datasets containing mRNA transcript levels during the cell cycle of budding yeast are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ay, A., Arnosti, D.N., Steegenga, W.T., Sijbers, A.M., Dechering, K.J., Reinders, M.J.T.: Mathematical Modeling of Gene Expression: A Guide for the Perplexed Biologist. Crit. Rev. Biochem. Mol. Biol. 46(2), 137–151 (2011)

    Article  Google Scholar 

  2. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering Gene Expression Patterns. Computational Biology 6(3-4) (1999)

    Google Scholar 

  3. Cole, A.: The Influence Matrix Methodology: A Technical Report. LC0506/175, Foundation for Research, Science and Technology, FRST (2006)

    Google Scholar 

  4. Temocçin, B.Z., Weber, G.W.: Optimal Control of Stochastic Hybrid System with Jumps: A Numerical Approximation. Computational and Applied Mathematics 259, 443–451 (2014)

    Article  MathSciNet  Google Scholar 

  5. Wolf, C., Person, F., Jelse, K.: A Logistic Analysis with the Sensitivity Model Prof. Vester. Tech. Rep. B2048, IVL Swedish Environmental Research Institute Ltd (2012)

    Google Scholar 

  6. van Someren, E.P., Vaes, B.L.T., Steegenga, W.T., Sijbers, A.M., Dechering, K.J., Reinders, M.J.T.: Least Absolute Regression Network Analysis of the Murine Osteoblast Differentiation Network. Bioinformatics 22(4), 477–484 (2006)

    Article  Google Scholar 

  7. van Someren, E.P., Wessels, L.F.A., Reinders, M.J.T.: Linear Modeling of Genetic Networks from Experimental Data. In: Proc. Int. Conf. Intell. Syst. Mol. Biol., vol. 8, pp. 355–366 (2000)

    Google Scholar 

  8. Vester, F.: Die Kunst vernetzt zu denken. Ideen und Werkzeuge fuer einen neuen Umgang mit Komplexitaet. Deutsche Verlags-Anstalt GmbH Stuttgart (1999)

    Google Scholar 

  9. Vester, F., von Hesler, A.: Sensitivitaetsmodell. Bundesminister d. Innern, Bonn (1980)

    Google Scholar 

  10. Neumann, G., Düring, D.: Methodology to Understand the Role of Knowledge Management in Logistic Companies. LogForum 4(5) (2008)

    Google Scholar 

  11. Weber, G.W., Kropat, E., Akteke-Öztürk, B., Görgülü, Z.K., Guo, D.: A Survey on OR and Mathematical Methods Applied on Gene-Environment Networks. CEJOR 17, 315–341 (2009)

    Article  MATH  Google Scholar 

  12. Weber, G.W., Defterli, O., Kropat, E.: Qualitative Simulation of Genetic Regulatory Networks Using Piecewise-Linear Models. European Journal of Operational Research 211(1), 1–14 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bossel, H.: System, Dynamik, Simulation. Modellbildung, Analyse und Simulation komplexer Systeme. Books on Demand GmbH Norderstedt/Germany (2004)

    Google Scholar 

  14. de Jong, H.: Modeling and Simulation of Genetic Regulatory Systems: A Literature Review. Computational Biology 9(1), 67–107 (2002)

    Article  Google Scholar 

  15. de Jong, H., Gouzé, L.J., Page, C., Sari, T., Geiselmann, J.: Qualitative Simulation of Genetic Regulatory Networks Using Piecewise-Linear Models. Bulletin of Mathematical Biology 66, 301–340 (2004)

    Article  MathSciNet  Google Scholar 

  16. Yeung, K.Y., Ruzzo, W.L.: An Empirical Study on Principal Component Analysis for Clustering Gene Expression Data. Tech. Rep. UWCSE20001103, Department of Computer Science & Engineering University of Washington (2000)

    Google Scholar 

  17. Bansal, M., Belcastro, V., Ambesi-Impiombato, A., di Bernardo, D.: How to Infer Gene Networks from Expression Profiles. Molecular Systems Biology 3(78) (2007)

    Google Scholar 

  18. Defterli, O.: Modern Mathematical Methods in Modeling and Dynamics of Regulatory Systems of Gene-Environment Networks. Ph.D. thesis, Graduate School of Natural Sciences, Department of Mathematics, Middle East Technical University (August 2011)

    Google Scholar 

  19. Defterli, O., Fügenschuh, A., Weber, G.W.: New Discretization and Optimization Techniques with Results in the Dynamics of Gene-Environment Networks. In: 3rd Global Conference on Power Control & Optimization (February 2010)

    Google Scholar 

  20. Defterli, O., Fügenschuh, A., Weber, G.W.: Modern Tools for the Time-Discrete Dynamics and Optimization of Gene-Environment Networks. Commun. Nonlinear Sci. Numer. Simulat. 16, 4768–4779 (2011)

    Article  MATH  Google Scholar 

  21. Cho, R.J., Campell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A., Wolfsberg, T.G., Gabrielian, L.A.E., Landsman, D., Lockhart, D.J., Davis, R.W.: A Genome-Wide Transcriptional Analysis of the Mitotic Cell Cycles. Molecular Cell 2, 65–73 (1998)

    Article  Google Scholar 

  22. Zhang, S.Q., Ching, W.K., Tsing, N.K., Leung, H.Y., Guo, D.: A New Multiple Regression Approach for the Construction of Genetic Regulatory Networks. Artificial Intelligence in Medicine 48(2-3), 153–160 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Amaya Moreno, L., Defterli, O., Fügenschuh, A., Weber, GW. (2014). Vester’s Sensitivity Model for Genetic Networks with Time-Discrete Dynamics. In: Dediu, AH., Martín-Vide, C., Truthe, B. (eds) Algorithms for Computational Biology. AlCoB 2014. Lecture Notes in Computer Science(), vol 8542. Springer, Cham. https://doi.org/10.1007/978-3-319-07953-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07953-0_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07952-3

  • Online ISBN: 978-3-319-07953-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics