Nothing Special   »   [go: up one dir, main page]

Skip to main content

Precision Mosaicking of Multi-images Based on Conic-Epipolar Constraint

  • Conference paper
Intelligent Data analysis and its Applications, Volume II

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 298))

  • 1878 Accesses

Abstract

In this paper a robust mosaic method based on conic-epipolar constraint is proposed. The main characteristics of the proposed method include: (1) Several new methods are presented to realize fast and accurate interest points extraction under various different scenes, including SURF based feature points detection, interest points selection based on uniform distribution. (2) the transformation parameters are estimated using the invariant of conic-epipolar constraint and the most “useful” matching points are used to register the images. Experiment results illustrate that the proposed algorithm carries out real-time image registration and is robust to large image translation, scaling and rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zitova, B., Flusser, J.: Image registration methods: A survey. Image Vis. Comput. 21(11), 977–1000 (2003)

    Article  Google Scholar 

  2. Ali, S., Reilly, V., Shah, M.: Sneddon: Motion and appearance contexts for tracking and reacquiring targets in aerial videos. In: IEEE CVPR, pp. 1–6 (2007)

    Google Scholar 

  3. Parag, T., Elgammal, A., Mittal, A.: A framework for feature selection for background subtraction. In: Proc. Computer Vision and Pattern Recognition, pp. 1916–1923 (2006)

    Google Scholar 

  4. Shum, H.-Y., Szeliski, R.: Construction of panoramic image mosaics with global and local alignment. Int. J. Comput. Vis. 36(2), 101–130 (2000)

    Article  Google Scholar 

  5. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 15(6), 415–434 (1997)

    Article  Google Scholar 

  6. Mikolajczyk, K., Schmid, C.: A Performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  7. Ke, Y., Sukthankar, R.: PCA-SIFT: A more distinctive representation for local image descriptors. In: IEEE Int. Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 506–513 (2004)

    Google Scholar 

  8. Krish, K., Heinrich, S., Snyder, W.E.: Global registration of overlapping images using accumulative image features. Pattern Recognition Letters 31(2), 112–118 (2010)

    Article  Google Scholar 

  9. Rothwell, C.A., Zisserman, A.: Using projective invariants for constant time library indexing in model based vision. In: BMVC 1991 (1991)

    Google Scholar 

  10. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Mundy, J.L., Heller, A.: Geometric Invariance in Computer Vision. MIT Press, Cambridge (1992)

    Google Scholar 

  12. Kahl, F., Heyden, A.: using conic correspondences in two images to estimate the epipolar geometry. In: Proceedings of the International Conference on Computer Vision (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Yi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yi, M., Chu, Y., Yan, Y. (2014). Precision Mosaicking of Multi-images Based on Conic-Epipolar Constraint. In: Pan, JS., Snasel, V., Corchado, E., Abraham, A., Wang, SL. (eds) Intelligent Data analysis and its Applications, Volume II. Advances in Intelligent Systems and Computing, vol 298. Springer, Cham. https://doi.org/10.1007/978-3-319-07773-4_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07773-4_55

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07772-7

  • Online ISBN: 978-3-319-07773-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics