Abstract
Adaptive visualizations support users in information acquisition and exploration and therewith in human access of data. Their adaptation effect is often based on approaches that require the training by an expert. Further the effects often aims to support just the individual aptitudes. This paper introduces an approach for modeling a canonical user that makes the predefined training-files dispensable and enables an adaptation of visualizations for the majority of users. With the introduced user deviation algorithm, the behavior of individuals can be compared to the average user behavior represented in the canonical user model to identify behavioral anomalies. The further introduced similarity measurements allow to cluster similar deviated behavioral patterns as groups and provide them effective visual adaptations.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Golemati, M., Halatsis, C., Vassilakis, C., Katifori, A., Lepouras, G.: A context-based adaptive visualization environment. In: Proceedings of the Conference on Information Visualization, IV 2006, pp. 62–67. IEEE Computer Society, Washington, DC (2006)
Golemati, M., Vassilakis, C., Katifori, A., Lepouras, G., Halatsis, C.: Context and adaptivity-driven visualization method selection. In: Mourlas, C., Germanakos, P. (eds.) Intelligent User Interfaces: Adaptation and Personalization Systems and Technologies, pp. 188–204. IGI Global (2009)
Gotz, D., When, Z., Lu, J., Kissa, P., Cao, N., Qian, W.H., Liu, S.X., Zhou, M.X.: Harvest: An intelligent visual analytic tool for the masses. In: Proceedings of the First International Workshop on Intelligent Visual Interfaces for Text Analysis, IVITA 2010, pp. 1–4. ACM, New York (2010)
Mackinlay, J.: Automating the design of graphical presentations of relational information. ACM Trans. Graph. 5, 110–141 (1986)
Mackinlay, J., Hanrahan, P., Stolte, C.: Show me: Automatic presentation for visual analysis. IEEE Transactions on Visualization and Computer Graphics 13, 1137–1144 (2007)
Shi, L., Cao, N., Liu, S., Qian, W., Tan, L., Wang, G., Sun, J., Lin, C.Y.: Himap: Adaptive visualization of large-scale online social networks. In: Visualization Symposium, PacificVis 2009, pp. 41–48. IEEE Pacific (2009)
da Silva, I., Santucci, G., del Sasso Freitas, C.: Ontology Visualization: One Size Does Not Fit All. In: EuroVA 2012: International Workshop on Visual Analytics, pp. 91–95. Eurographics Association (2012)
Ahn, J.W., Brusilovsky, P.: Adaptive visualization of search results: Bringing user models to visual analytics. Information Visualization 8, 180–196 (2009)
Ahn, J.W.: Adaptive Visualization for Focused Personalized Information Retrieval. PhD thesis, School of Information Sciences, University of Pittsburgh (2010)
Nazemi, K., Stab, C., Fellner, D.W.: Interaction analysis for adaptive user interfaces. In: Huang, D.-S., Zhao, Z., Bevilacqua, V., Figueroa, J.C. (eds.) ICIC 2010. LNCS, vol. 6215, pp. 362–371. Springer, Heidelberg (2010)
Nazemi, K., Stab, C., Fellner, D.W.: Interaction analysis: An algorithm for interaction prediction and activity recognition in adaptive systems. In: Proc. of IEEE ICIS, pp. 607–612. IEEE Press, New York (2010)
Nazemi, K., Stab, C., Kuijper, A.: A reference model for adaptive visualization systems. In: Jacko, J.A. (ed.) Human-Computer Interaction, Part I, HCII 2011. LNCS, vol. 6761, pp. 480–489. Springer, Heidelberg (2011)
Anderson, C.R., Domingos, P., Weld, D.S.: Relational markov models and their application to adaptive web navigation. In: KDD 2002: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 143–152. ACM, New York (2002)
Nazemi, K., Retz, R., Bernard, J., Kohlhammer, J., Fellner, D.: Adaptive semantic visualization for bibliographic entries. In: Bebis, G., et al. (eds.) ISVC 2013, Part II. LNCS, vol. 8034, pp. 13–24. Springer, Heidelberg (2013)
Nazemi, K., Breyer, M., Forster, J., Burkhardt, D., Kuijper, A.: Interacting with semantics: A user-centered visualization adaptation based on semantics data. In: Smith, M.J., Salvendy, G. (eds.) Human Interface, HCII 2011, Part I. LNCS, vol. 6771, pp. 239–248. Springer, Heidelberg (2011)
Sleeman, D.: Umfe: a user modelling front-end subsystem. Int. J. Man-Mach. Stud., 71–88 (1985)
Brusilovsky, P., Millán, E.: User models for adaptive hypermedia and adaptive educational systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 3–53. Springer, Heidelberg (2007)
Nazemi, K., Burkhardt, D., Breyer, M., Kuijper, A.: Modeling users for adaptive semantics visualizations. In: Stephanidis, C. (ed.) Universal Access in HCI, Part II, HCII 2011. LNCS, vol. 6766, pp. 88–97. Springer, Heidelberg (2011)
Luo, H., Niu, C., Shen, R., Ullrich, C.: A collaborative filtering framework based on both local user similarity and global user similarity. Mach. Learn., 231–245 (2008)
Gong, S.: A collaborative filtering recommendation algorithm based on user clustering and item clustering. Journal of Software 5, 745–752 (2010)
Guo, L., Peng, Q.: A combinative similarity computing measure for collaborative filtering. In: Proceedings of ICCSEE 2013. Advances in Intelligent Systems Research, pp. 1921–1924. Atlantis Press (2013)
Brusilovsky, P., wook Ahn, J., Dumitriu, T., Yudelson, M.: Adaptive knowledge-based visualization for accessing educational examples. In: Tenth International Conference on Information Visualization, IV 2006, pp. 142–150 (2006)
Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Feature-weighted user model for recommender systems. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 97–106. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Nazemi, K., Retz, W., Kohlhammer, J., Kuijper, A. (2014). User Similarity and Deviation Analysis for Adaptive Visualizations. In: Yamamoto, S. (eds) Human Interface and the Management of Information. Information and Knowledge Design and Evaluation. HIMI 2014. Lecture Notes in Computer Science, vol 8521. Springer, Cham. https://doi.org/10.1007/978-3-319-07731-4_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-07731-4_7
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07730-7
Online ISBN: 978-3-319-07731-4
eBook Packages: Computer ScienceComputer Science (R0)