Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multiobjective Differential Evolutionary Neural Network for Multi Class Pattern Classification

  • Conference paper
Recent Advances on Soft Computing and Data Mining

Abstract

In this paper, a Differential Evolution (DE) algorithm for solving multiobjective optimization problems to solve the problem of tuning Artificial Neural Network (ANN) parameters is presented. The multiobjective evolutionary used in this study is a Differential Evolution algorithm while ANN used is Three-Term Backpropagation network (TBP). The proposed algorithm, named (MODETBP) utilizes the advantages of multi objective differential evolution to design the network architecture in order to find an appropriate number of hidden nodes in the hidden layer along with the network error rate. For performance evaluation, indicators, such as accuracy, sensitivity, specificity and 10-fold cross validation are used to evaluate the outcome of the proposed method. The results show that our proposed method is viable in multi class pattern classification problems when compared with TBP Network Based on Elitist Multiobjective Genetic Algorithm (MOGATBP) and some other methods found in literature. In addition, the empirical analysis of the numerical results shows the efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mineu, N.L., Ludermir, T.B., Almeida, L.M.: Topology optimization for artificial neural networks using differential evolution. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–7 (2010)

    Google Scholar 

  2. Ding, S., Su, C., Yu, J.: An optimizing BP neural network algorithm based on genetic algorithm. Artificial Intelligence Review 36, 153–162 (2011)

    Article  Google Scholar 

  3. Zhang, C., Shao, H., Li, Y.: Particle swarm optimisation for evolving artificial neural network. In: 2000 IEEE International Conference on Systems, Man, and Cybernetics (2000), pp. 2487–2490. IEEE (2000)

    Google Scholar 

  4. Ilonen, J., Kamarainen, J.-K., Lampinen, J.: Differential evolution training algorithm for feed-forward neural networks. Neural Processing Letters 17, 93–105 (2003)

    Article  Google Scholar 

  5. Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation 1, 32–49 (2011)

    Article  Google Scholar 

  6. Goh, C.-K., Teoh, E.-J., Tan, K.C.: Hybrid multiobjective evolutionary design for artificial neural networks. IEEE Transactions on Neural Networks 19, 1531–1548 (2008)

    Article  Google Scholar 

  7. Delgado, M., Cuéllar, M.P., Pegalajar, M.C.: Multiobjective hybrid optimization and training of recurrent neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 38, 381–403 (2008)

    Article  Google Scholar 

  8. Qasem, S.N., Shamsuddin, S.M.: Memetic elitist pareto differential evolution algorithm based radial basis function networks for classification problems. Applied Soft Computing 11, 5565–5581 (2011)

    Article  Google Scholar 

  9. Qasem, S.N., Shamsuddin, S.M.: Radial basis function network based on time variant multi-objective particle swarm optimization for medical diseases diagnosis. Applied Soft Computing 11, 1427–1438 (2011)

    Article  Google Scholar 

  10. Fernandez Caballero, J.C., Martínez, F.J., Hervás, C., Gutiérrez, P.A.: Sensitivity versus accuracy in multiclass problems using memetic Pareto evolutionary neural networks. IEEE Transactions on Neural Networks 21, 750–770 (2010)

    Article  Google Scholar 

  11. Jin, Y., Okabe, T., Sendhoff, B.: Neural network regularization and ensembling using multi-objective evolutionary algorithms. In: Congress on Evolutionary Computation, CEC 2004, pp. 1–8. IEEE (2004)

    Google Scholar 

  12. Abbass, H.A., Sarker, R., Newton, C.: PDE: A Pareto-frontier differential evolution approach for multi-objective optimization problems. In: Proceedings of the 2001 Congress on Evolutionary Computation, pp. 971–978. IEEE (2001)

    Google Scholar 

  13. Abbass, H.A., Sarker, R.: The Pareto differential evolution algorithm. International Journal on Artificial Intelligence Tools 11, 531–552 (2002)

    Article  Google Scholar 

  14. Fieldsend, J.E., Singh, S.: Pareto evolutionary neural networks. IEEE Transactions on Neural Networks 16, 338–354 (2005)

    Article  Google Scholar 

  15. Abbass, H.A., Sarker, R.: Simultaneous evolution of architectures and connection weights in ANNs. In: Proceedings of Artificial Neural Networks and Expert System Conference, pp. 16–21 (2001)

    Google Scholar 

  16. Abbass, H.A.: A memetic pareto evolutionary approach to artificial neural networks. In: Stumptner, M., Corbett, D.R., Brooks, M. (eds.) Canadian AI 2001. LNCS (LNAI), vol. 2256, pp. 1–12. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  17. Abbass, H.A.: An evolutionary artificial neural networks approach for breast cancer diagnosis. Artificial Intelligence in Medicine 25, 265–281 (2002)

    Article  Google Scholar 

  18. Liu, G., Kadirkamanathan, V.: Multiobjective criteria for neural network structure selection and identification of nonlinear systems using genetic algorithms. IEE Proceedings-Control Theory and Applications 146, 373–382 (1999)

    Article  Google Scholar 

  19. Cruz-Ramírez, M., Hervás-Martínez, C., Gutiérrez, P.A., Pérez-Ortiz, M., Briceño, J., de la Mata, M.: Memetic Pareto differential evolutionary neural network used to solve an unbalanced liver transplantation problem. Soft Computing 17, 275–284 (2013)

    Article  Google Scholar 

  20. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Storn, R.: System design by constraint adaptation and differential evolution. IEEE Transactions on Evolutionary Computation 3, 22–34 (1999)

    Article  Google Scholar 

  22. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation 10, 646–657 (2006)

    Article  Google Scholar 

  23. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.: Opposition-based differential evolution. IEEE Transactions on Evolutionary Computation 12, 64–79 (2008)

    Article  Google Scholar 

  24. Tsai, J.-T., Ho, W.-H., Chou, J.-H., Guo, C.-Y.: Optimal approximation of linear systems using Taguchi-sliding-based differential evolution algorithm. Applied Soft Computing 11, 2007–2016 (2011)

    Article  Google Scholar 

  25. Babu, B., Jehan, M.M.L.: Differential evolution for multi-objective optimization. In: The 2003 Congress on Evolutionary Computation, CEC 2003, pp. 2696–2703. IEEE (2003)

    Google Scholar 

  26. Ali, M., Siarry, P., Pant, M.: An efficient differential evolution based algorithm for solving multi-objective optimization problems. European Journal of Operational Research 217, 404–416 (2012)

    MATH  MathSciNet  Google Scholar 

  27. Alatas, B., Akin, E., Karci, A.: MODENAR: Multi-objective differential evolution algorithm for mining numeric association rules. Applied Soft Computing 8, 646–656 (2008)

    Article  Google Scholar 

  28. Gong, W., Cai, Z.: A multiobjective differential evolution algorithm for constrained optimization. In: IEEE Congress on Evolutionary Computation, CEC 2008 (IEEE World Congress on Computational Intelligence), pp. 181–188. IEEE (2008)

    Google Scholar 

  29. Zweiri, Y., Whidborne, J., Seneviratne, L.: A three-term backpropagation algorithm. Neurocomputing 50, 305–318 (2003)

    Article  MATH  Google Scholar 

  30. Ibrahim, A.O., Shamsuddin, S.M., Ahmad, N.B., Qasem, S.N.: Three-Term Backpropagation Network Based On Elitist Multiobjective Genetic Algorithm for Medical Diseases Diagnosis Classification. Life Science Journal 10 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf Osman Ibrahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ibrahim, A.O., Shamsuddin, S.M., Qasem, S.N. (2014). Multiobjective Differential Evolutionary Neural Network for Multi Class Pattern Classification. In: Herawan, T., Ghazali, R., Deris, M. (eds) Recent Advances on Soft Computing and Data Mining. Advances in Intelligent Systems and Computing, vol 287. Springer, Cham. https://doi.org/10.1007/978-3-319-07692-8_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07692-8_64

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07691-1

  • Online ISBN: 978-3-319-07692-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics