Nothing Special   »   [go: up one dir, main page]

Skip to main content

Five-Dimensional Sentiment Analysis of Corpora, Documents and Words

  • Conference paper
Advances in Self-Organizing Maps and Learning Vector Quantization

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 295))

Abstract

Sentiment analysis has become a widely used approach to assess the emotional content of written documents such as customer feedback. In positive psychology research, the typical one-dimensional analysis framework has been extended to include five dimensions. This five-dimensional model, PERMA, enables a fine-grained analysis of written texts. We propose an approach in which this model, statistical analysis and the self-organizing map are used. We analyze corpora from various genres. A hybrid methodology that uses the self-organizing maps algorithm and human judgment is suggested for expanding the PERMA lexicon. This vocabulary expansion can be useful for English but it is potentially even more crucial in the case of other languages for which the lexicon is not readily available. The challenges and solutions related to the text mining of texts written in a morphologically complex language such as Finnish are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Castellani, B., Hafferty, F.W.: Sociology and Complexity Science: A New Field of Inquiry. Springer (2009)

    Google Scholar 

  2. Du Bois, J.W.: Santa Barbara Corpus of Spoken American English. University of California, Santa Barbara Center for the Study of Discourse (2000)

    Google Scholar 

  3. Goldspink, C.: Methodological implications of complex systems approaches to sociality: Simulation as a foundation for knowledge. Journal of Artificial Societies and Social Simulation 5(1), 1–19 (2002)

    Google Scholar 

  4. Hämäläinen, R.P., Saarinen, E.: Systems intelligence – the way forward? a note on Ackoff’s “why few organizations adopt systems thinking”. Systems Research and Behavioral Science 5(6), 821–825 (2008)

    Article  Google Scholar 

  5. Hansen, L.K., Arvidsson, A., Nielsen, F.Å., Colleoni, E., Etter, M.: Good friends, bad news - affect and virality in twitter. In: The 2011 International Workshop on Social Computing, Network, and Services (SocialComNet 2011), pp. 34–43 (2011)

    Google Scholar 

  6. Honkela, T., Pulkki, V., Kohonen, T.: Contextual relations of words in Grimm tales, analyzed by self-organizing map. In: Fogelman-Soulié, F., Gallinari, P. (eds.) Proc. of ICANN 1995, vol. II, pp. 3–7. EC2, Nanterre (1995)

    Google Scholar 

  7. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168–177. ACM (2004)

    Google Scholar 

  8. Hyman, P.: In the year of disruptive education. Communications of the ACM 55(12), 20–22 (2012)

    Article  Google Scholar 

  9. Janasik, N., Honkela, T., Bruun, H.: Text mining in qualitative research application of an unsupervised learning method. Organizational Research Methods 12(3), 436–460 (2009)

    Article  Google Scholar 

  10. Koehn, P.: Europarl: A parallel corpus for statistical machine translation. In: MT Summit, vol. 5 (2005)

    Google Scholar 

  11. Kohonen, T.: Self-Organizing maps. Springer, Heidelberg (2001)

    Book  Google Scholar 

  12. Koskenniemi, K.: A general computational model for word-form recognition and production. In: Proceedings of the 10th International Conference on Computational Linguistics, pp. 178–181. Association for Computational Linguistics (1984)

    Google Scholar 

  13. Lindén, K., Silfverberg, M., Pirinen, T.: HFST tools for morphology – an efficient open-source package for construction of morphological analyzers. In: Mahlow, C., Piotrowski, M. (eds.) SFCM 2009. CCIS, vol. 41, pp. 28–47. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: Proceedings of LREC 2010. ELRA, Valletta (2010)

    Google Scholar 

  15. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval 2(1-2), 1–135 (2008)

    Article  Google Scholar 

  16. Ritter, H., Kohonen, T.: Self-organizing semantic maps. Biological Cybernetics 61(4), 241–254 (1989)

    Article  Google Scholar 

  17. Saarinen, E.: Life-philosophical lecturing as a systems-intelligent technology of the self. In: The XXIII World Congress of Philosophy, Athens, Greece (2013)

    Google Scholar 

  18. Saarinen, E., Lehti, T.: Inducing mindfulness through life-philosophical lecturing. Wiley (to appear, 2014)

    Google Scholar 

  19. Schwartz, H.A., Eichstaedt, J.C., Kern, M.L., Dziurzynski, L., Lucas, R.E., Agrawal, M., Park, G.J., Lakshmikanth, S.K., Jha, S., Seligman, M.E.P., Ungar, L.H.: Characterizing geographic variation in well-being using tweets. In: Proceedings of the Seventh International AAAI Conference on Weblogs and Social Media, ICWSM (2013)

    Google Scholar 

  20. Schwartz, H.A., Eichstaedt, J.C., Kern, M.L., Dziurzynski, L., Ramones, S.M., Agrawal, M., Shah, A., Kosinski, M., Stillwell, D., Seligman, M.E.: Personality, gender, and age in the language of social media: The open-vocabulary approach. PloS One 8(9), e73791 (2013)

    Article  Google Scholar 

  21. Seligman, M.E.: Flourish: A visionary new understanding of happiness and well-being. Free Press, New York (2011)

    Google Scholar 

  22. Seligman, M.E., Csikszentmihalyi, M.: Positive psychology: An introduction. American Psychologist, 5–14 (2000)

    Google Scholar 

  23. Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642. Association for Computational Linguistics, Stroudsburg (2013)

    Google Scholar 

  24. Tausczik, Y.R., Pennebaker, J.W.: The psychological meaning of words: LIWC and computerized text analysis methods. Journal of Language and Social Psychology 29(1), 24–54 (2010)

    Article  Google Scholar 

  25. Turney, P.D.: Thumbs up or thumbs down? semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 417–424. Association for Computational Linguistics, Stroudsburg (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Honkela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Honkela, T., Korhonen, J., Lagus, K., Saarinen, E. (2014). Five-Dimensional Sentiment Analysis of Corpora, Documents and Words. In: Villmann, T., Schleif, FM., Kaden, M., Lange, M. (eds) Advances in Self-Organizing Maps and Learning Vector Quantization. Advances in Intelligent Systems and Computing, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-319-07695-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07695-9_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07694-2

  • Online ISBN: 978-3-319-07695-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics