Nothing Special   »   [go: up one dir, main page]

Skip to main content

Some Room for GLVQ: Semantic Labeling of Occupancy Grid Maps

  • Conference paper
Advances in Self-Organizing Maps and Learning Vector Quantization

Abstract

This paper aims at an approach for labeling places within a grid cell environment. For that we propose a method that is based on non-negative matrix factorization (NMF) to extract environment specific features from a given occupancy grid map. NMF also computes a description about where on the map these features need to be applied. We use this description after certain pre-processing steps as an input for generalized learning vector quantization (GLVQ) to achieve the classification or labeling of the grid cells. Our approach is evaluated on a standard data set from University of Freiburg, showing very promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mozos, O.M., Triebel, R., Jensfelt, P., Rottmann, A., Burgard, W.: Supervised semantic labeling of places using information extracted from sensor data. RAS 55(5), 391–402 (2007)

    Google Scholar 

  2. Shi, L., Kodagoda, S., Dissanayake, G.: Laser range data based semantic labeling of places. In: IROS, pp. 5941–5946. IEEE (2010)

    Google Scholar 

  3. Shi, L., Kodagoda, S., Dissanayake, G.: Multi-class classification for semantic labeling of places. In: ICARCV, pp. 2307–2312. IEEE (2010)

    Google Scholar 

  4. Sousa, P., Araujo, R., Nunes, U.: Real-Time Labeling of Places using Support Vector Machines. In: ISIE, pp. 2022–2027 (2007)

    Google Scholar 

  5. Nieto-Granda, C., Rogers, J.G., Trevor, A.J., Christensen, H.I.: Semantic map partit. in indoor environments using regional analysis. In: IROS, pp. 1451–1456 (2010)

    Google Scholar 

  6. Bahrmann, F., Hellbach, S., Böhme, H.J.: Please tell me where I am: A fundament for a semantic labeling approach. In: KI, pp. 120–124 (2012)

    Google Scholar 

  7. Pronobis, A., Mozos, O.M., Caputo, B., Jensfelt, P.: Multi-modal semantic place classification. Int J. Robot. Res. 29(2-3), 298–320 (2010)

    Article  Google Scholar 

  8. Koppula, H.S., Anand, A., Joachims, T., Saxena, A.: Semantic labeling of 3d point clouds for indoor scenes. In: NIPS, pp. 244–252 (2011)

    Google Scholar 

  9. Anand, A., Koppula, H.S., Joachims, T., Saxena, A.: Contextually guided semantic labeling and search for three-dimensional point clouds. Int. J. Robot. Res. 32(1), 19–34 (2013)

    Article  Google Scholar 

  10. Hellbach, S., Himstedt, M., Boehme, H.J.: Towards Non-negative Matrix Factorization based Localization. In: ECMR (2013)

    Google Scholar 

  11. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process. Syst 13, 556–562 (2001)

    Google Scholar 

  12. Eggert, J., Wersing, H., Körner, E.: Transformation-invariant representation and NMF. In: IJCNN, pp. 2535–2539 (2004)

    Google Scholar 

  13. Eggert, J., Körner, E.: Sparse Coding and NMF. In: IJCNN, pp. 2529–2533 (2004)

    Google Scholar 

  14. Vollmer, C., Hellbach, S., Eggert, J., Gross, H.M.: Sparse coding of human motion trajectories with non-negative matrix factorization. Neurocomp. (2013)

    Google Scholar 

  15. Paglieroni, D.W.: Distance transforms: properties and machine vision applications. CVGIP: Graph. Models Image Process. 54(1), 56–74 (1992)

    Google Scholar 

  16. Kohonen, T.: The self-organizing map. Proc. of the IEEE 78(9), 1464–1480 (1990)

    Article  Google Scholar 

  17. Sato, A., Yamada, K.: Generalized learning vector quantization. In: NIPS, pp. 423–429. MIT Press, Cambridge (1996)

    Google Scholar 

  18. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Networks 15(8-9), 1059–1068 (2002)

    Article  Google Scholar 

  19. Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning vector quantization. Neural Computation 21, 3532–3561 (2009)

    Article  MathSciNet  Google Scholar 

  20. Qin, A.K., Suganthan, P.N.: A novel kernel prototype-based learning algorithm. In: ICPR (4), pp. 621–624 (2004)

    Google Scholar 

  21. Hammer, B., Strickert, M., Villmann, T.: Supervised neural gas with general similarity measure. Neural Processing Letters 21(1), 21–44 (2005)

    Article  Google Scholar 

  22. Villmann, T., Haase, S.: Divergence-based vector quantization. Neural Computation 23(5), 1343–1392 (2011)

    Article  MathSciNet  Google Scholar 

  23. Kästner, M., Riedel, M., Strickert, M., Villmann, T.: Class border sensitive generalized learning vector quantization - an alternative to support vector machines. Machine Learning Reports 6(MLR-04-2012), 40–56 (2012)

    Google Scholar 

  24. Mozos, O.M.: Semantic Place Labeling with Mobile Robots. PhD thesis, Dept. of Computer Science, University of Freiburg (July 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Hellbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hellbach, S., Himstedt, M., Bahrmann, F., Riedel, M., Villmann, T., Böhme, HJ. (2014). Some Room for GLVQ: Semantic Labeling of Occupancy Grid Maps. In: Villmann, T., Schleif, FM., Kaden, M., Lange, M. (eds) Advances in Self-Organizing Maps and Learning Vector Quantization. Advances in Intelligent Systems and Computing, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-319-07695-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07695-9_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07694-2

  • Online ISBN: 978-3-319-07695-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics