Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fusion of Kohonen Maps Ranked by Cluster Validity Indexes

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2014)

Abstract

In this study, a new approach to Kohonen Self-Organizing Maps fusion is presented: the use of modified cluster validity indexes as a criterion for merging Kohonen Maps. Computational simulations were performed with traditional dataset from the UCI Machine Learning Repository, with variations in map size, number of subsets to be merged and the percentage of dataset bagging. The fusion results were compared with a regular single Kohonen Map. In some selected parameters, the proposed method achieves a better accuracy measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 10 (1990)

    Article  Google Scholar 

  3. Perrone, M.P., Cooper, L.N.: When networks disagree: ensemble methods for hybrid neural networks. In: Neural Networks for Speech and Image Processing, pp. 126–142. Chapman and Hall (1993)

    Google Scholar 

  4. Kohonen, T.: Self-organized maps, 2nd edn. Springer, Berlin (1997)

    Book  Google Scholar 

  5. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  6. Zhou, Z.-H., Wu, J., Tang, W.: Ensembling neural networks: many could be better than all. Artificial Intelligence 137(1-2), 239–263 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gonçalves, M.L., De Andrade Netto, M.L., Costa, J.A.F., Zullo, J.: Data clustering using self-organizing maps segmented by mathematic morphology and simplified cluster validity indexes: an application in remotely sensed images. In: International Joint Conference on Neural Networks, IJCNN 2006, pp. 4421–4428 (2006)

    Google Scholar 

  8. Georgakis, A., Li, H., Gordan, M.: An ensemble of SOM networks for document organization and retrieval. In: International Conference on Adaptive Knowledge Representation and Reasoning (2005)

    Google Scholar 

  9. Saavedra, C., Salas, R., Moreno, S., Allende, H.: Fusion of self organizing maps. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 227–234. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Corchado, E., Baruque, B.: WeVoS-ViSOM: an ensemble summarization algorithm for enhanced data visualization. Neurocomputing 75, 171–184 (2012)

    Article  Google Scholar 

  11. Borrajo, M.L., Baruque, B., Corchado, E., Bajo, J., Corchado, J.M.: Hybrid neural intelligent system to predict business failure in small-to-medium-size enterprises. International Journal of Neural Systems 21(04), 277–296 (2011)

    Article  Google Scholar 

  12. Jiang, Y., Zhi-Hua, Z.: SOM ensemble-based image segmentation. Neural Processing Letters 20(3), 171–178 (2004)

    Article  Google Scholar 

  13. Low, K.H., Wee, K.L., Marcelo, H.A.: An ensemble of cooperative extended Kohonen maps for complex robot motion tasks. Neural Computation 17, 1411–1445 (2005)

    Article  MATH  Google Scholar 

  14. DeLooze, L.L.: Attack characterization and intrusion detection using an ensemble of self-organizing maps. In: 2006 IEEE Information Assurance Workshop, pp. 108–115 (2006)

    Google Scholar 

  15. Fustes, D., Dafonte, C., Arcay, B., Manteiga, M., Smith, K., Vallenari, A., Luri, X.: SOM ensemble for unsupervised outlier analysis. Application to outlier identification in the Gaia astronomical survey. Expert Systems with Applications 40(5), 1530–1541 (2013)

    Article  Google Scholar 

  16. Tsai, C.-F.: Combining cluster analysis with classifier ensembles to predict financial distress. Information Fusion 16, 46–58 (2014)

    Article  Google Scholar 

  17. Halkidi, M., Vazirgiannis, M.: A density-based cluster validity approach using multi-representatives. Pattern Recognition Letters 29, 773–786 (2008)

    Article  Google Scholar 

  18. Milligan, G.W., Cooper, M.C.: An examination of procedures for determining the number of clusters in a data set. Psychometrika 50, 159–179 (1985)

    Article  Google Scholar 

  19. Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. IEEE Transactions on Systems, Man and Cybernetic. B 28, 301–315 (1998)

    Article  Google Scholar 

  20. Pakhira, M.K., Bandopadhyay, S., Maulik, U.: Validity index for crisp and fuzzy clusters. Pattern Recognition 37(3), 487–501 (2004)

    Article  MATH  Google Scholar 

  21. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-1(2), 224–227 (1979)

    Article  Google Scholar 

  22. Bache, K., Lichman, M.: Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences (2013), http://archive.ics.uci.edu/ml

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Pasa, L.A., Costa, J.A.F., de Medeiros, M.G. (2014). Fusion of Kohonen Maps Ranked by Cluster Validity Indexes. In: Polycarpou, M., de Carvalho, A.C.P.L.F., Pan, JS., Woźniak, M., Quintian, H., Corchado, E. (eds) Hybrid Artificial Intelligence Systems. HAIS 2014. Lecture Notes in Computer Science(), vol 8480. Springer, Cham. https://doi.org/10.1007/978-3-319-07617-1_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07617-1_57

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07616-4

  • Online ISBN: 978-3-319-07617-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics