Nothing Special   »   [go: up one dir, main page]

Skip to main content

Soft Clustering Based on Hybrid Bayesian Networks in Socioecological Cartography

  • Conference paper
Hybrid Artificial Intelligence Systems (HAIS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8480))

Included in the following conference series:

  • 2042 Accesses

Abstract

The interactions between nature and society need new tools capable of dealing with the inherent complexity and heterogeneity of the territory. Traditional clustering methodologies have been applied to solve this problem. Although these return adequate results, soft clustering based on hybrid Bayesian networks, returns more detailed results. Moreover their probabilistic nature delivers additional advantages. The main contribution of this paper, is to apply this tool to obtain the socioecological cartography of a Mediterranean watershed. The results are compared to a traditional agglomerative clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Domon, G., Gariepy, M., Bouchard, A.: Ecological cartography and land-use planning: Trends and perspectives. Geoforum 20, 69–82 (1989)

    Article  Google Scholar 

  2. Anderies, J., Janssen, M., Ostom, E.: A framework to analyze the robustness of socio-ecological systems from an institutional perspective. Ecology & Society 9(1), 1–18 (2004)

    Google Scholar 

  3. Folke, C.: Resilience: The emergence of a perspective for social-ecological systems analyses. Global Environmental Change 16, 253–267 (2006)

    Article  Google Scholar 

  4. Pasqualini, V., Pergent-Martini, C., Clabaut, P., Pergent, G.: Mapping of posidonia oceanica using aerial photographs and side scan sonar: Application of the island of corsica (france). Estuarine, Coastal and Shelf Science 47, 359–367 (1998)

    Article  Google Scholar 

  5. Schmitz, M., Pineda, F., Castro, H., Aranzabal, I.D., Aguilera, P.: Cultural landscape and socioeconomic structure. Environmental value and demand for tourism in a Mediterranean territory. Consejería de Medio Ambiente. Junta de Andalucía, Sevilla (2005)

    Google Scholar 

  6. Ruiz-Labourdette, D., Martínez, F., Martín-López, B., Montes, C., Pineda, F.D.: Equilibrium of vegetation and climate at the european rear edge. a reference for climate change planning in mountainous mediterranean regions. Int. J. Biometeorol 55, 285–301 (2011)

    Article  Google Scholar 

  7. Hawkins, C.V.: Landscape conservation trough residential subdivision bylaws: Explanations for local adoption. Landscape and Urban Planning 12, 141–148 (2014)

    Article  Google Scholar 

  8. Jain, A.K., Murty, M.M., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  9. Aguilera, P.A., Fernández, A., Ropero, R.F., Molina, L.: Groundwater quality assessment using data clustering based on hybrid Bayesian networks. Stochastic Environmental Research & Risk Assessment 27(2), 435–447 (2013)

    Article  Google Scholar 

  10. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs. Springer (2007)

    Google Scholar 

  11. Aguilera, P.A., Fernández, A., Fernández, R., Rumí, R., Salmerón, A.: Bayesian networks in environmental modelling. Environmental Modelling & Software 26, 1376–1388 (2011)

    Article  Google Scholar 

  12. Uusitalo, L.: Advantages and challenges of Bayesian networks in environmental modelling. Ecological Modelling 203, 312–318 (2007)

    Article  Google Scholar 

  13. Lauritzen, S.L.: Propagation of probabilities, means and variances in mixed graphical association models. Journal of the American Statistical Association 87, 1098–1108 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Moral, S., Rumí, R., Salmerón, A.: Mixtures of Truncated Exponentials in Hybrid Bayesian Networks. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 156–167. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Shenoy, P.P., West, J.C.: Inference in hybrid Bayesian networks using mixtures of polynomials. International Journal of Approximate Reasoning 52(5), 641–657 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Langseth, H., Nielsen, T.D., Rumí, R., Salmerón, A.: Mixtures of Truncated Basis Functions. International Journal of Approximate Reasoning 53(2), 212–227 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dan, L., Yang, H., Liang, X.: Prediction analysis of a wastewater treatment system using a bayesian network. Environmental Modelling & Software 40, 140–150 (2013)

    Article  Google Scholar 

  18. Rumí, R., Salmerón, A., Moral, S.: Estimating mixtures of truncated exponentials in hybrid Bayesian networks. Test 15, 397–421 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rumí, R., Salmerón, A.: Approximate probability propagation with mixtures of truncated exponentials. International Journal of Approximate Reasoning 45, 191–210 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Cobb, B.R., Rumí, R., Salmerón, A.: Bayesian networks models with discrete and continuous variables. In: Lucas, P., Gámez, J.A., Salmerón, A. (eds.) Advances in Probabilistic Graphical Models. STUDFUZZ, vol. 214, pp. 81–102. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Elvira-Consortium: Elvira: An Environment for Creating and Using Probabilistic Graphical Models. In: Proceedings of the First European Workshop on Probabilistic Graphical Models, pp. 222–230 (2002)

    Google Scholar 

  22. Anderberg, M.R.: Cluster Analysis for Applications. Academic Press (1973)

    Google Scholar 

  23. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. Wiley Interscience (2001)

    Google Scholar 

  24. Tanner, M.A., Wong, W.H.: The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association 82, 528–550 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lauritzen, S.L.: The EM algorithm for graphical association models with missing data. Computational Statistics and Data Analysis 19, 191–201 (1995)

    Article  MATH  Google Scholar 

  26. Gower, J.: A general coefficient of similarity and some of its properties. Biometrics 27, 857–874 (1971)

    Article  Google Scholar 

  27. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2012) ISBN 3-900051-07-0

    Google Scholar 

  28. Rousseeuw, P.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  MATH  Google Scholar 

  29. ESRI: ArcMap Version 9.3. Environmental Systems Research Institute (ESRI), Redlands, CA (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ropero, R.F., Aguilera, P.A., Rumí, R. (2014). Soft Clustering Based on Hybrid Bayesian Networks in Socioecological Cartography. In: Polycarpou, M., de Carvalho, A.C.P.L.F., Pan, JS., Woźniak, M., Quintian, H., Corchado, E. (eds) Hybrid Artificial Intelligence Systems. HAIS 2014. Lecture Notes in Computer Science(), vol 8480. Springer, Cham. https://doi.org/10.1007/978-3-319-07617-1_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07617-1_53

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07616-4

  • Online ISBN: 978-3-319-07617-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics