Abstract
The interactions between nature and society need new tools capable of dealing with the inherent complexity and heterogeneity of the territory. Traditional clustering methodologies have been applied to solve this problem. Although these return adequate results, soft clustering based on hybrid Bayesian networks, returns more detailed results. Moreover their probabilistic nature delivers additional advantages. The main contribution of this paper, is to apply this tool to obtain the socioecological cartography of a Mediterranean watershed. The results are compared to a traditional agglomerative clustering.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Domon, G., Gariepy, M., Bouchard, A.: Ecological cartography and land-use planning: Trends and perspectives. Geoforum 20, 69–82 (1989)
Anderies, J., Janssen, M., Ostom, E.: A framework to analyze the robustness of socio-ecological systems from an institutional perspective. Ecology & Society 9(1), 1–18 (2004)
Folke, C.: Resilience: The emergence of a perspective for social-ecological systems analyses. Global Environmental Change 16, 253–267 (2006)
Pasqualini, V., Pergent-Martini, C., Clabaut, P., Pergent, G.: Mapping of posidonia oceanica using aerial photographs and side scan sonar: Application of the island of corsica (france). Estuarine, Coastal and Shelf Science 47, 359–367 (1998)
Schmitz, M., Pineda, F., Castro, H., Aranzabal, I.D., Aguilera, P.: Cultural landscape and socioeconomic structure. Environmental value and demand for tourism in a Mediterranean territory. Consejería de Medio Ambiente. Junta de Andalucía, Sevilla (2005)
Ruiz-Labourdette, D., Martínez, F., Martín-López, B., Montes, C., Pineda, F.D.: Equilibrium of vegetation and climate at the european rear edge. a reference for climate change planning in mountainous mediterranean regions. Int. J. Biometeorol 55, 285–301 (2011)
Hawkins, C.V.: Landscape conservation trough residential subdivision bylaws: Explanations for local adoption. Landscape and Urban Planning 12, 141–148 (2014)
Jain, A.K., Murty, M.M., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31(3), 264–323 (1999)
Aguilera, P.A., Fernández, A., Ropero, R.F., Molina, L.: Groundwater quality assessment using data clustering based on hybrid Bayesian networks. Stochastic Environmental Research & Risk Assessment 27(2), 435–447 (2013)
Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs. Springer (2007)
Aguilera, P.A., Fernández, A., Fernández, R., Rumí, R., Salmerón, A.: Bayesian networks in environmental modelling. Environmental Modelling & Software 26, 1376–1388 (2011)
Uusitalo, L.: Advantages and challenges of Bayesian networks in environmental modelling. Ecological Modelling 203, 312–318 (2007)
Lauritzen, S.L.: Propagation of probabilities, means and variances in mixed graphical association models. Journal of the American Statistical Association 87, 1098–1108 (1992)
Moral, S., Rumí, R., Salmerón, A.: Mixtures of Truncated Exponentials in Hybrid Bayesian Networks. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 156–167. Springer, Heidelberg (2001)
Shenoy, P.P., West, J.C.: Inference in hybrid Bayesian networks using mixtures of polynomials. International Journal of Approximate Reasoning 52(5), 641–657 (2011)
Langseth, H., Nielsen, T.D., Rumí, R., Salmerón, A.: Mixtures of Truncated Basis Functions. International Journal of Approximate Reasoning 53(2), 212–227 (2012)
Dan, L., Yang, H., Liang, X.: Prediction analysis of a wastewater treatment system using a bayesian network. Environmental Modelling & Software 40, 140–150 (2013)
Rumí, R., Salmerón, A., Moral, S.: Estimating mixtures of truncated exponentials in hybrid Bayesian networks. Test 15, 397–421 (2006)
Rumí, R., Salmerón, A.: Approximate probability propagation with mixtures of truncated exponentials. International Journal of Approximate Reasoning 45, 191–210 (2007)
Cobb, B.R., Rumí, R., Salmerón, A.: Bayesian networks models with discrete and continuous variables. In: Lucas, P., Gámez, J.A., Salmerón, A. (eds.) Advances in Probabilistic Graphical Models. STUDFUZZ, vol. 214, pp. 81–102. Springer, Heidelberg (2007)
Elvira-Consortium: Elvira: An Environment for Creating and Using Probabilistic Graphical Models. In: Proceedings of the First European Workshop on Probabilistic Graphical Models, pp. 222–230 (2002)
Anderberg, M.R.: Cluster Analysis for Applications. Academic Press (1973)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. Wiley Interscience (2001)
Tanner, M.A., Wong, W.H.: The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association 82, 528–550 (1987)
Lauritzen, S.L.: The EM algorithm for graphical association models with missing data. Computational Statistics and Data Analysis 19, 191–201 (1995)
Gower, J.: A general coefficient of similarity and some of its properties. Biometrics 27, 857–874 (1971)
R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2012) ISBN 3-900051-07-0
Rousseeuw, P.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)
ESRI: ArcMap Version 9.3. Environmental Systems Research Institute (ESRI), Redlands, CA (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Ropero, R.F., Aguilera, P.A., Rumí, R. (2014). Soft Clustering Based on Hybrid Bayesian Networks in Socioecological Cartography. In: Polycarpou, M., de Carvalho, A.C.P.L.F., Pan, JS., Woźniak, M., Quintian, H., Corchado, E. (eds) Hybrid Artificial Intelligence Systems. HAIS 2014. Lecture Notes in Computer Science(), vol 8480. Springer, Cham. https://doi.org/10.1007/978-3-319-07617-1_53
Download citation
DOI: https://doi.org/10.1007/978-3-319-07617-1_53
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07616-4
Online ISBN: 978-3-319-07617-1
eBook Packages: Computer ScienceComputer Science (R0)