Abstract
In this paper, a novel Genetic Generalized Discriminant Analysis (GGDA) is proposed. GGDA is a generalized version of Exponential Discriminant Analysis (EDA). EDA algorithm is equivalent to map the samples to a new space and then perform LDA. However, is this space is optimal for classification? The proposed GGDA uses Genetic Algorithm to search for an more discriminant diffusing map and then perform LDA in the new space. The Experimental results confirm the efficiency of the proposed algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Li, J.B., Chu, S.C., Pan, J.S., Jain, L.C.: Multiple viewpoints based overview for face recognition. Journal of Information Hiding and Multimedia Signal Processing 3(4), 352–369 (2012)
Kong, A., Zhang, D., Kamel, M.: A survey of palmprint recognition. Pattern Recognition 42(7), 1408–1418 (2009)
Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)
Roweis, S.: Em algorithms for PCA and SPCA. In: Advances in Neural Information Processing Systems, pp. 626–632. MIT Press (1998)
Belhumenur, P., Hepanha, J., Kriegman, D.: Eigenfaces vs. Fisherface: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis Machine and Intelligence 19(7), 711–720 (1997)
Martinez, A.M., Kak, A.: PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(2), 228–233 (2001)
He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.: Face recognition using laplacianface. IEEE Transactions on Pattern Analysis Machine and Intelligence 27(3), 328–340 (2005)
Xu, Y., Zhang, D., Jin, Z., Li, M., Yang, J.: A fast kernel-based nonlinear discriminant analysis for multi-class problems. Pattern Recognition 39(6), 1026–1033 (2006)
Li, J., Gao, H.: Sparse data-dependent kernel principal component analysis based on least squares support vector machine for feature extraction and recognition. Neural Computing and Applications 21(8), 1971–1980 (2012)
Li, J., Pan, J., Chu, S.: Kernel class-wise locality preserving projection. Information Sciences 178(7), 1825–1835 (2008)
Xu, Y., Zhang, D.: Represent and fuse bimodal biometric images at the feature fevel: Complex-matrix-based fusion scheme. Optical Engineering 49(3) (March 2010) 037002–037002–6
Zhang, T., Fang, B., Tang, Y.Y., Shang, Z., Xu, B.: Generalized discriminant analysis: A matrix exponential approach. IEEE Trans. Systems, Man, and Cybernetics-Part B: Cybernetics 40(1), 186–197 (2010)
Goldberg, D., Holland, J.: Genetic algorithms and machine learning. Machine Learning 3(2-3), 95–99 (1988)
Goldberg, D.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley (1989)
Zhang, L., Zhang, D., Guo, Z.: Phase congruency induced local features for finger-knuckle-print recognition. Pattern Recognition 45(7), 2522–2531 (2012)
Martinez, A.M., Benavente, R.: The AR face database. In CVC Technical Report 24 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Yan, L., Tang, L., Chu, SC., Zhu, X., Li, JB., Guo, X. (2014). Genetic Generalized Discriminant Analysis and Its Applications. In: Ali, M., Pan, JS., Chen, SM., Horng, MF. (eds) Modern Advances in Applied Intelligence. IEA/AIE 2014. Lecture Notes in Computer Science(), vol 8481. Springer, Cham. https://doi.org/10.1007/978-3-319-07455-9_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-07455-9_26
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07454-2
Online ISBN: 978-3-319-07455-9
eBook Packages: Computer ScienceComputer Science (R0)