Nothing Special   »   [go: up one dir, main page]

Skip to main content

Genetic Generalized Discriminant Analysis and Its Applications

  • Conference paper
Modern Advances in Applied Intelligence (IEA/AIE 2014)

Abstract

In this paper, a novel Genetic Generalized Discriminant Analysis (GGDA) is proposed. GGDA is a generalized version of Exponential Discriminant Analysis (EDA). EDA algorithm is equivalent to map the samples to a new space and then perform LDA. However, is this space is optimal for classification? The proposed GGDA uses Genetic Algorithm to search for an more discriminant diffusing map and then perform LDA in the new space. The Experimental results confirm the efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Li, J.B., Chu, S.C., Pan, J.S., Jain, L.C.: Multiple viewpoints based overview for face recognition. Journal of Information Hiding and Multimedia Signal Processing 3(4), 352–369 (2012)

    Google Scholar 

  2. Kong, A., Zhang, D., Kamel, M.: A survey of palmprint recognition. Pattern Recognition 42(7), 1408–1418 (2009)

    Article  Google Scholar 

  3. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  4. Roweis, S.: Em algorithms for PCA and SPCA. In: Advances in Neural Information Processing Systems, pp. 626–632. MIT Press (1998)

    Google Scholar 

  5. Belhumenur, P., Hepanha, J., Kriegman, D.: Eigenfaces vs. Fisherface: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis Machine and Intelligence 19(7), 711–720 (1997)

    Article  Google Scholar 

  6. Martinez, A.M., Kak, A.: PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(2), 228–233 (2001)

    Article  Google Scholar 

  7. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.: Face recognition using laplacianface. IEEE Transactions on Pattern Analysis Machine and Intelligence 27(3), 328–340 (2005)

    Article  Google Scholar 

  8. Xu, Y., Zhang, D., Jin, Z., Li, M., Yang, J.: A fast kernel-based nonlinear discriminant analysis for multi-class problems. Pattern Recognition 39(6), 1026–1033 (2006)

    Article  MATH  Google Scholar 

  9. Li, J., Gao, H.: Sparse data-dependent kernel principal component analysis based on least squares support vector machine for feature extraction and recognition. Neural Computing and Applications 21(8), 1971–1980 (2012)

    Article  Google Scholar 

  10. Li, J., Pan, J., Chu, S.: Kernel class-wise locality preserving projection. Information Sciences 178(7), 1825–1835 (2008)

    Article  MATH  Google Scholar 

  11. Xu, Y., Zhang, D.: Represent and fuse bimodal biometric images at the feature fevel: Complex-matrix-based fusion scheme. Optical Engineering 49(3) (March 2010) 037002–037002–6

    Google Scholar 

  12. Zhang, T., Fang, B., Tang, Y.Y., Shang, Z., Xu, B.: Generalized discriminant analysis: A matrix exponential approach. IEEE Trans. Systems, Man, and Cybernetics-Part B: Cybernetics 40(1), 186–197 (2010)

    Article  Google Scholar 

  13. Goldberg, D., Holland, J.: Genetic algorithms and machine learning. Machine Learning 3(2-3), 95–99 (1988)

    Article  Google Scholar 

  14. Goldberg, D.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley (1989)

    Google Scholar 

  15. Zhang, L., Zhang, D., Guo, Z.: Phase congruency induced local features for finger-knuckle-print recognition. Pattern Recognition 45(7), 2522–2531 (2012)

    Article  Google Scholar 

  16. Martinez, A.M., Benavente, R.: The AR face database. In CVC Technical Report 24 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yan, L., Tang, L., Chu, SC., Zhu, X., Li, JB., Guo, X. (2014). Genetic Generalized Discriminant Analysis and Its Applications. In: Ali, M., Pan, JS., Chen, SM., Horng, MF. (eds) Modern Advances in Applied Intelligence. IEA/AIE 2014. Lecture Notes in Computer Science(), vol 8481. Springer, Cham. https://doi.org/10.1007/978-3-319-07455-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07455-9_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07454-2

  • Online ISBN: 978-3-319-07455-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics