Nothing Special   »   [go: up one dir, main page]

Skip to main content

Numerical Optimal Control of Integral-Algebraic Equations Using Differential Evolution with Fletcher’s Filter

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8467))

Included in the following conference series:

Abstract

Integral-algebraic equations are an interesting method of modeling real world problems with not too severe assumptions. We proposed a simple numerical method of using differential evolution. Constraints in optimal control problems are handled using a method based on the works of Fletcher and his co-workers’ filter.

Numerical results for typical benchmark problems are provided. The efficiency of the proposed method occurred to be satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Differential Equations. In: Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press (2004)

    Google Scholar 

  2. Chiou, J.-P., Wang, F.: A hybrid method of differential evolution with application to optimal control problems of a bioprocess system. In: Proceedings of the IEEE World Congress on Computational Intelligence, The 1998 IEEE International Conference on Evolutionary Computation, pp. 627–632 (1998)

    Google Scholar 

  3. Cpałka, K., Rutkowski, L.: Evolutionary learning of flexible neuro-fuzzy structures. In: Recent Advances in Control and Automation, pp. 398–407. Akademicka Oficyna Wydawnicza EXIT (2008)

    Google Scholar 

  4. Fletcher, R., Leyffer, S., Toint, P.L.: On the global convergence of a filter-SQP algorithm. SIAM J. Optim. 13, 44–59 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fletcher, R., Gould, N.I.M., Leyffer, S., Toint, P.L., Wächter, A.: Global convergence of trust-region SQP-filter algorithms for general nonlinear programming. SIAM J. Optimization 13, 635–659 (2002)

    Article  MATH  Google Scholar 

  6. Fletcher, R.: A Sequential Linear Constraint Programming algorithm for NLP. SIAM Journal of Optimization Vol (3), 772–794

    Google Scholar 

  7. Galar, R.: Handicapped Individua in Evolutionary Processes. Biol. Cybern. 53, 1–9 (1985)

    Article  MATH  Google Scholar 

  8. Galar, R.: Evolutionary Search with Soft Selection. Biol. Cybern. 60, 357–364 (1989)

    MATH  MathSciNet  Google Scholar 

  9. Gong, W., Cai, Z.: A Multiobjective Differential Evolution Algorithm for Constrained Optimization. In: IEEE Congress on Evolutionary Computation (CEC 2008) (2008)

    Google Scholar 

  10. Gordián-Rivera, L.-A., Mezura-Montes, E.: A Combination of Specialized Differential Evolution Variants for Constrained Optimization. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds.) IBERAMIA 2012. LNCS, vol. 7637, pp. 261–270. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Kauthen, J.-P.: The numerical solution of integral-algebraic equations of index 1 by polynomial spline collocation methods. Mathematics of Computation 70(236), 1503–1514 (2000)

    Article  MathSciNet  Google Scholar 

  12. Kress, R.: Linear Integral Equations. Applied Mathematical Sciences, vol. 82. Springer (1989)

    Google Scholar 

  13. Lopez Cruz, I.L., Van Willigenburg, L.G., Van Straten, G.: Efficient Differential Evolution algorithms for multimodal optimal control problems. Applied Soft Computing 3(2), 97–122 (2003) ISSN 1568-4946

    Google Scholar 

  14. de Melo, V., Grazieli, L., Costa, C.: Evaluating differential evolution with penalty function to solve constrained engineering problems. Expert Systems with Applications 39, 7860–7863 (2012)

    Article  Google Scholar 

  15. Mezura-Montes, E., Coello, C.A.: A Simple Multimembered Evolution Strategy to Solve Constrained Optimization Problems. IEEE Transactions on Evolutionary Computation 9(1), 1–17 (2005)

    Google Scholar 

  16. Mezura-Montes, E., Coello Coello, C.A., Tun-Morales, E.I.: Simple Feasibility Rules and Differential Evolution for Constrained Optimization. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 707–716. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Storn, R., Price, K.: Differential evolution – a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report (1995)

    Google Scholar 

  18. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Price, K., Storn, R., Lampinen, J.: Differential Evolution A Practical Approach to Global Optimization. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  20. Rafajłowicz, E., Styczeń, K., Rafajłowicz, W.: A modified filter SQP method as a tool for optimal control of nonlinear systems with spatio-temporal dynamics. International Journal of Applied Mathematics and Computer Science 22(2) (2012)

    Google Scholar 

  21. Rafajłowicz, E., Rafajłowicz, W.: Fletcher’s Filter Methodology as a Soft Selector in Evolutionary Algorithms for Constrained Optimization. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) EC 2012 and SIDE 2012. LNCS, vol. 7269, pp. 333–341. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Rafajłowicz, W.: Method of handling constraints in differential evolution using fletcher’s filter. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS (LNAI), vol. 7895, pp. 46–55. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Rocha, A.M.A.C., Costa, M.F.P., Fernandes, E.M.G.P.: An Artificial Fish Swarm Filter-Based Method for Constrained Global Optimization. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part III. LNCS, vol. 7335, pp. 57–71. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Skowron, M., Styczeń, K.: Evolutionary search for globally optimal constrained stable cycles. Chemical Engineering Science 61(24), 7924–7932 (2006)

    Article  Google Scholar 

  25. Skowron, M., Styczeń, K.: Evolutionary search for globally optimal stable multicycles in complex systems with inventory couplings. International Journal of Chemical Engineering (2009)

    Google Scholar 

  26. Wang, F.-S., Chiou, J.-P.: Optimal Control and Optimal Time Location Problems of Differential-Algebraic Systems by Differential Evolution. Ind. Eng. Chem. Res. 36(12), 5348–5357 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Rafajłowicz, W. (2014). Numerical Optimal Control of Integral-Algebraic Equations Using Differential Evolution with Fletcher’s Filter. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2014. Lecture Notes in Computer Science(), vol 8467. Springer, Cham. https://doi.org/10.1007/978-3-319-07173-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07173-2_35

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07172-5

  • Online ISBN: 978-3-319-07173-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics