Abstract
Surface plasmon polaritons (SPPs) confined along metal-dielectric interface have attracted a relevant interest in the area of ultracompact photonic circuits, photovoltaic devices and other applications due to their strong field confinement and enhancement. This paper investigates a novel cascade neural network (NN) architecture to find the dependance of metal thickness on the SPP propagation. Additionally, a novel training procedure for the proposed cascade NN has been developed using an OpenMP-based framework to strongly reduce the training time. The performed experiments confirm the effectiveness of the proposed NN architecture for the problem at hand.
This work was supported by the Miur project “Energetic” (PON02_00355_3391233 IT).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Franken, R.H., Stolk, R.L., Li, H., Van der Werf, C.H.M., Rath, J.K., Schropp, R.E.I.: Understanding light trapping by light scattering textured back electrodes in thin film n-i-p-type silicon solar cells. Journal of Applied Physics 102(1), 14503–14509 (2007)
Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nature Materials 9(3), 205–213 (2010)
Fahr, S., Rockstuhl, C., Lederer, F.: Metallic nanoparticles as intermediate reflectors in tandem solar cells. Appl. Phys. Lett. 95(12), 121105–121107 (2009)
Walters, R.J., van Loon, R.V.A., Brunets, I., Schmitz, J., Polman, A.: A silicon-based electrical source of surface plasmon polaritons. Nature Materials 9(3), 21–25 (2010)
De Waele, R., Burgos, S.P., Polman, A., Atwater, H.A.: Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements. Nano Lett. 9, 2832–2837 (2009)
Shah, A., Torres, P., Tscharner, R., Wyrsch, N., Keppner, H.: Photovoltaic technology: the case for thin-film solar cells. Science 285(5428), 692–698 (1999)
Maier, S.A.: Plasmonic: Fundamentals and Applications. Springer (2007)
Mandic, D.P., Chambers, J.: Recurrent neural networks for prediction: learning algorithms, architectures and stability. John Wiley & Sons, Inc. (2001)
Schetinin, V.: A learning algorithm for evolving cascade neural networks. Neural Processing Letters 17(1), 21–23 (2003)
Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Computation 1(2), 270–280 (1989)
Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory programming. IEEE Computational Science & Engineering 5(1), 46–55 (1998)
Chapman, B., Jost, G., Van Der Pas, R.: Using OpenMP: portable shared memory parallel programming, vol. 10. The MIT Press (2008)
Capizzi, G., Napoli, C., Paternò, L.: An innovative hybrid neuro-wavelet method for reconstruction of missing data in astronomical photometric surveys. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 21–29. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Bonanno, F., Capizzi, G., Sciuto, G.L., Napoli, C., Pappalardo, G., Tramontana, E. (2014). A Cascade Neural Network Architecture Investigating Surface Plasmon Polaritons Propagation for Thin Metals in OpenMP. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2014. Lecture Notes in Computer Science(), vol 8467. Springer, Cham. https://doi.org/10.1007/978-3-319-07173-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-07173-2_3
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07172-5
Online ISBN: 978-3-319-07173-2
eBook Packages: Computer ScienceComputer Science (R0)